面向对象的地理实体时空位置多粒度表达
An Object-oriented Representation Method for Multi-granularity for Spatio-temporal Position of Geographical Entities
查看参考文献18篇
文摘
|
同一地理实体在不同的时空粒度下会表现出相异的位置动态变化规律。近年来,如何对地理实体在不同时空粒度下的时空位置进行组织和表达成为GIS研究的热点之一。本文基于面向对象的思想,设计了“三级空间”和“0-1位置变化序列”,并由此提出一种地理实体时空位置的多粒度表达方法。在实体时空位置的多粒度描述方面,对于任一地理实体,空间维度上构建一种具有不同空间粒度的“全局—相对—对象”三级空间;时间维度上将不同时段或时刻转换为一系列不同时间粒度的离散时间点。在实体时空位置的多粒度存储组织方面,将地理实体时空位置的变化过程划分为不同阶段,对该实体在不同时间点下的空间位置信息设置不同的存储方式,可合理减少信息冗余。在实体时空位置的多粒度转换方面,提出基于三级空间的递进认知、时间点与时段之间快速转换等策略,初步实现了地理实体时空位置在不同时空粒度下的转换。该方法可有效地描述地理实体在可变时空粒度下的时空位置,为时态GIS和多粒度时空数据库的建立提供参考。 |
其他语种文摘
|
The dynamic variation rules of spatial position of a geographical entity could vary with the granularity of space and time. Scholars have tried to analyze the spatio-temporal position of geographical entities at multiple levels during the process of spatio-temporal reasoning, track data mining, and so on. Therefore, it has been a hotspot in GIS that how to effectively organize and express the spatio-temporal position of geographical entities under different spatio-temporal granularities. To solve this problem, two strategies have been applied for one geographical entity based on object-oriented thinking: "a three-level space" and "0-1 variation series of positions". Based on that two strategies, a method has been proposed to support the multi-granularity representation of spatio-temporal position of a geographical entity. Firstly, a three-level space including global space, relative space and object space has been constructed to guarantee the multi-granularity of the space, the transformation from different time period or moment to a series of discrete time points with different temporal granularity helping break the limit of temporal granularity. Then, for one geographical entity, its change process of spatio-temporal position could be divided into a series of stages according to the "0-1 variation series of positions". Based on this, different storage schemes for its spatial position information under each time point have been designed to reduce redundancy. Furthermore, the progressive recognition aroused from the three-level space, and the transitions between time points and periods could help to obtain the spatio-temporal positions of one geographical entity at more spatio-temporal granularities through its positions at existing spatiotemporal granularities. By the loose coupling between the space and time in describing the positions of geographical entities, the method could efficiently represent the spatio-temporal positions of geographical entities under variable granularity of space and time, which could help provide a reference for temporal GIS or multigranularity spatio-temporal database. |
来源
|
地球信息科学学报
,2017,19(9):1208-1216 【核心库】
|
DOI
|
10.3724/SP.J.1047.2017.01208
|
关键词
|
时空位置
;
地理实体
;
时间多粒度
;
空间多粒度
;
时态GIS
|
地址
|
1.
武汉大学, 测绘遥感信息工程国家重点实验室, 武汉, 430079
2.
武汉大学, 测绘遥感信息工程国家重点实验室;;地球空间信息技术协同创新中心, 武汉, 430079
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1560-8999 |
学科
|
测绘学 |
基金
|
国家重点研发计划项目
;
国家自然科学基金项目
;
武汉大学测绘遥感信息工程国家重点实验室基金
|
文献收藏号
|
CSCD:6081483
|
参考文献 共
18
共1页
|
1.
王珂. 基于多粒度的时空数据模型构建研究.
测绘与空间地理信息,2015,38(11):74-77
|
CSCD被引
2
次
|
|
|
|
2.
华一新. 全空间信息系统的核心问题和关键技术.
测绘科学技术学报,2016,33(4):331-335
|
CSCD被引
50
次
|
|
|
|
3.
Usery E L. A feature-based geographic information system model.
Photogrammetric Engineering and Remote Sensing,1996,62(7):833-838
|
CSCD被引
16
次
|
|
|
|
4.
Janowicz K. Semantic enablement for spatial data infrastructures.
Transactions in GIS,2010,14(2):111-129
|
CSCD被引
3
次
|
|
|
|
5.
刘德儿. 基于地理特征语义单元的地理空间建模.
测绘科学,2014,39(7):48-52
|
CSCD被引
1
次
|
|
|
|
6.
Hoinkes R. Playing with time-continuous temporal mapping strategies for interactive environments.
Canadian GIS Conference,1994
|
CSCD被引
1
次
|
|
|
|
7.
舒红. 面向对象的时空数据模型.
武汉测绘科技大学学报,1997,22(3):229-233
|
CSCD被引
42
次
|
|
|
|
8.
李景文. 基于过程的面向对象时空数据模型数据组织方法.
测绘科学,2013,38(5):100-102
|
CSCD被引
6
次
|
|
|
|
9.
Tang A Y. A spatial data model design for feature-based geographical information systems.
International Journal of Geographical Information Systems,1996,10(5):643-659
|
CSCD被引
22
次
|
|
|
|
10.
张山山. 地理信息系统时空数据模型分类.
测绘科学,2012,37(4):215-217
|
CSCD被引
4
次
|
|
|
|
11.
曹志月. 一种面向对象的时空数据模型.
测绘学报,2002,31(1):87-92
|
CSCD被引
54
次
|
|
|
|
12.
Wu Q. An all-time-domain moving object data model, location updating strategy, and position estimation.
International Journal of Distributed Sensor Networks,2015,11(11):463749
|
CSCD被引
1
次
|
|
|
|
13.
Petitjean F. Spatio-temporal reasoning for the classification of satellite image time series.
Pattern Recognition Letters,2012,13(33):1805-1815
|
CSCD被引
4
次
|
|
|
|
14.
Li X. Traffic density-based discovery of hot routes in road networks.
International Symposium on Spatial and Temporal Databases,2007:441-459
|
CSCD被引
2
次
|
|
|
|
15.
Diggle P J.
Statistical analysis of spatial and spatio-temporal point patterns,2013
|
CSCD被引
4
次
|
|
|
|
16.
周成虎. 全空间地理信息系统展望.
地理科学进展,2015,34(2):129-131
|
CSCD被引
87
次
|
|
|
|
17.
Armstrong M P. Temporality in spatial databases.
Proceedings of Gis/lis88 Acsm,1988,2(2):196-202
|
CSCD被引
2
次
|
|
|
|
18.
Langran G. A framework for temporal geographic information.
Cartographica: The International Journal for Geographic Information and Geovisualization,1988,25(3):1-14
|
CSCD被引
48
次
|
|
|
|
|