不同气团对广东鹤山大气超级监测站单颗粒气溶胶理化特征的影响
The Influence of Different Air Masses on the Single Particle Aerosol Physical and Chemical Characteristics in Heshan Atmospheric Supersite of Guangdong
查看参考文献25篇
文摘
|
大气气溶胶对健康、环境和气候具有重要影响,研究其理化特征能阐明灰霾的成因及机理,对科学调控大气环境具有重要意义。以广东江门鹤山大气超级监测站为观测平台,使用单颗粒气溶胶质谱仪(SPAMS)和气团后向轨迹综合分析了单颗粒气溶胶的理化特征,揭示了气团轨迹对颗粒物浓度、类型和化学成分的影响。单颗粒气溶胶质谱仪在2012年5月11日至7月31日,共采集了约600万个同时含有粒径和质谱信息的颗粒,它们主要可分为8类:有机碳颗粒(OC)、元素碳颗粒(EC)、元素-有机碳混合颗粒(ECOC)、富钾颗粒(K-rich)、大分子有机碳颗粒(HMOC)、海盐颗粒(Na-K)、金属颗粒(Metal)和富硅颗粒(Si-rich)。各类颗粒的质谱特征在一定程度上反映了颗粒的来源:EC颗粒来自一次污染源;K-rich颗粒主要来自与生物质燃烧有关的过程;Na-K颗粒来自于海盐碎沫;Metal颗粒主要来自工业源或火力发电;Si-rich颗粒则主要来自扬尘。8类颗粒中普遍存在的二次成分表明它们都经历了一定程度的大气老化过程。采样期间每隔6 h绘制一条气团后向轨迹图,聚类分析发现这些气团后向轨迹主要有5类:第1类占总轨迹数的14.1%,它代表由内陆经广州、佛山到达采样点的气团;第2类占总轨迹数的10.2%,它代表沿东南部大陆海岸线到达采样点的气团;第3类和第5类在气团后向轨迹中占的比例最高,分别为30.0%和36.8%,它们都来自南海海面,但第3类气团经珠海、澳门到达采样点,而第5类则经阳江到达采样点;第4类占总轨迹数的8.8%,这类气团途经深圳、东莞到达采样点。单颗粒数据结合气团后向轨迹进行统计分析表明:经广州、佛山到达采样点的气团会带来高浓度的颗粒物污染,且颗粒的老化程度较高,而发源于南海海面的气团能带来新鲜海风,对鹤山的大气污染起稀释作用;在颗粒类别上,途经广州、佛山、东莞、深圳这些重污染城市的气团中EC颗粒和ECOC颗粒的含量更高,而途经珠三角南部区域的气团则含有更多的OC颗粒和Metal颗粒。 |
其他语种文摘
|
Atmospheric aerosols have an important influence on health, environment and climate. The physicochemical characteristics of aerosols can provide information on the origin and formation mechanism of haze, and therefore it is important to study their characteristics for air pollution control. In this study, we carried out our field observation in Heshan atmospheric supersite of Guangdong by using single particle Aerosol Mass Spectrometry (SPAMS). The size and chemical composition of single particle aerosol were characterized, and the influence of air-mass trajectories on particles concentration, type and chemical composition were discussed. About 6 million particles with both size and ion spectra were analyzed by SPAMS during May 11 to July 31,2012. All particles were classified into eight major classes, consisting of organic carbon (OC), elemental carbon (EC), internally mixed elemental-organic carbon (ECOC), K-rich, high mass organic carbon (HMOC), sea salt (Na-K), metal and Si-rich particle types. The mass spectra patterns show: EC particles originate from direct emission; K-rich particles originate mainly from biomass burning; Na-K particles originate from sea salt; Metal particles originate mainly from industrial manufacture or coal-fired power; Si-rich particles originate from dust. All particles contained some secondary components, indicating the aging process. Backward air-mass trajectories were calculated every 6 hours during the sampling period. Cluster analysis show that these trajectories can be classified into 4 clusters: 14.1% air-mass trajectories arrived from inland via Guangzhou and Foshan (cluster 1); 10.2% air-mass trajectories arrived from Mainland southeast coastline (cluster 2); cluster 3 and cluster 5 accounted for 30.0% and 36.8% of total air-mass trajectories, respectively. Both of them arrived from South China Sea, cluster 3 landed in Zhuhai and Macao, but cluster 5 landed in Yangjiang. 8.8% air-mass trajectories from Dongguan and Shenzhen were classified as cluster 4. Statistical analysis shows that air mass transported through Guangzhou and Foshan brought high levels of particle pollutants to the sampling site, and the particles were more aged. However, air mass originated from South China Sea could bring fresh sea breeze, which dilute atmospheric contaminant in Heshan. For particle types, air mass from heavily polluted urban like Guangzhou, Foshan, Dongguan and Shenzhen brought more ECOC particles and EC particles, and air mass from the southern part of Pearl River Delta region brought more OC particles and Metal particles. |
来源
|
生态环境学报
,2015,24(1):63-69 【核心库】
|
关键词
|
单颗粒气溶胶
;
污染物来源分析
;
后向轨迹
;
SPAMS
|
地址
|
1.
广东省环境监测中心, 国家环境保护区域空气质量监测重点实验室;;中国科学院有机地球化学国家重点实验室, 广东, 广州, 510308
2.
暨南大学, 广东, 广州, 510632
3.
中国科学院广州地球化学研究所, 有机地球化学国家重点实验室, 广东, 广州, 510640
4.
广东省环境监测中心, 国家环境保护区域空气质量监测重点实验室, 广东, 广州, 510308
5.
广东省环境监测中心, 国家环境保护区域空气质量监测重点实验室, 510640
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1674-5906 |
学科
|
环境科学基础理论 |
基金
|
国家环境保护公益性行业科研专项
|
文献收藏号
|
CSCD:5366268
|
参考文献 共
25
共2页
|
1.
Dall'Osto M. Real-time secondary aerosol formation during a fog event in London.
Atmospheric Chemistry and Physics,2009,9(7):2459-2469
|
CSCD被引
11
次
|
|
|
|
2.
Hagler G S W. Source areas and chemical composition of fine particulate matter in the pearl river delta region of china.
Atmospheric Environment,2006,40(20):3802-3815
|
CSCD被引
46
次
|
|
|
|
3.
Hudson P K. Biomass-burning particle measurements: Characteristic composition and chemical processing.
Journal of Geophysical Research: Atmospheres (1984-2012),2004,109(D23)
|
CSCD被引
19
次
|
|
|
|
4.
Junker C. Measurement and analysis of aerosol and black carbon in the southwestern United States and Panama and their dependence on air mass origin.
Journal of geophysical research,2004,109:D13201
|
CSCD被引
2
次
|
|
|
|
5.
Li L. Real time bipolar time-of-flight mass spectrometer for analyzing single aerosol particles.
International Journal of Mass Spectrometry,2011,303(2/3):118-124
|
CSCD被引
96
次
|
|
|
|
6.
Li M G. Analysis of the transport pathways and potential sources of PM_(10) in Shanghai based on three methods.
Science of The Total Environment,2012,414:525-534
|
CSCD被引
11
次
|
|
|
|
7.
Moffet R C. Measurement of ambient aerosols in northern Mexico city by single particle mass spectrometry.
Atmospheric Chemistry and Physics,2008,8(16):4499-4516
|
CSCD被引
50
次
|
|
|
|
8.
Qin X Y. Impact of biomass emissions on particle chemistry during the California regional particulate air quality study.
International Journal of Mass Spectrometry,2006,258(1):142-150
|
CSCD被引
4
次
|
|
|
|
9.
Qin X Y.
Characterization of ambient aerosol composition and formation mechanisms and development of quantification methodologies utilizing ATOFMS,2007:329
|
CSCD被引
6
次
|
|
|
|
10.
Schauer J J. Measurement of emissions from air pollution sources. 2. C1 through C30 organic compounds from medium duty diesel trucks.
Environmental Science & Technology,1999,33(10):1578-1587
|
CSCD被引
146
次
|
|
|
|
11.
Silva P J. Interpretation of mass spectra from organic compounds in aerosol time-of-flight mass spectrometry.
Analytical Chemistry,2000,72(15):3553-3562
|
CSCD被引
21
次
|
|
|
|
12.
Song X H. Classification of single particles analyzed by ATOFMS using an artificial neural network, ART-2a.
Analytical Chemistry,1999,71:860-865
|
CSCD被引
52
次
|
|
|
|
13.
Zhang Y. Source apportionment of lead-containing aerosol particles in Shanghai using single particle mass spectrometry.
Chemosphere,2009,74(4):501-507
|
CSCD被引
29
次
|
|
|
|
14.
白建辉. 鼎湖山地面臭氧、氮氧化物变化特征的分析.
环境科学学报,1999,25(3):40-43
|
CSCD被引
1
次
|
|
|
|
15.
陈多宏. 不同天气类型广东大气超级站细粒子污染特征初步研究.
地球化学,2014,43(3):217-223
|
CSCD被引
14
次
|
|
|
|
16.
胡晓宇. 珠江三角洲城市群PM10的相互影响研究.
北京大学学报:自然科学版,2011,23(3):519-524
|
CSCD被引
21
次
|
|
|
|
17.
王淑兰. 珠江三角洲城市间空气污染的相互影响.
中国环境科学,2005,26(2):133-137
|
CSCD被引
90
次
|
|
|
|
18.
吴兑. 珠江三角洲霾天气的近地层输送条件研究.
应用气象学报,2008,19(1):1-8
|
CSCD被引
153
次
|
|
|
|
19.
张国华.
城市大气气溶胶混合状态的初步研究,2013:124
|
CSCD被引
3
次
|
|
|
|
20.
张磊. 2011年6~8月平流输送对黄山顶污染物浓度的影响.
中国环境科学,2013,25(6):969-978
|
CSCD被引
27
次
|
|
|
|
|