激光直接沉积CoCrFeNiMn高熵合金:气孔-组织结构-拉伸性能之间的关系
Direct laser deposited CoCrFeNiMn high-entropy alloys: relationship between pores-microstructuretensile properties
查看参考文献29篇
文摘
|
采用激光直接沉积技术成功制备等原子CoCrFeNiMn高熵合金。研究沿试样沉积高度方向上的气孔的大小、数量和组织结构及室温(293K)和低温(77,200K)下试样的拉伸性能。结果表明:CoCrFeNiMn合金表现出定向结晶规律,在合金底部区域晶界处形成伴有长形气孔的树枝状柱状晶,随着区域靠近试样顶部,晶粒形态转变为等轴晶粒。而在试样顶部区域,气孔形状呈圆形且数量大大降低。比较在77,200K和293K温度下的合金的相应拉伸性能可知:试样顶部区域选取的77K拉伸试样具有更好的性能,但在中部区域的293K拉伸试样和在底部区域中的200K拉伸试样的伸长率相似,这是由于试样不同的气孔率和组织结构的差异所致。 |
其他语种文摘
|
The equiatomic CoCrFeNiMn high entropy alloys (HEAs)has been successfully manufactured using direct laser deposition(DLD)technique.The size and number of porosities,the microstructures along the height of samples and the tensile properties of DLDed HEAs prepared under room (293K)and cryogenic temperatures(77Kand 200K)were investigated.The results show that DLDed HEAs exhibit directional solidification,forming dendritic columnar grains with long pores at the grain boundary in bottom regions and transiting to equiaxed grains close to top regions.And in the top regions,the pores are round and the numbers are greatly reduced.Compared with tensile properties of DLDed HEAs,the 77 K tensile samples cut from the top region have better performance,but the elongation of 293Ktensile samples in the middle region and 200Ktensile samples in the bottom region are similar,owing to the difference of porosity and microstructure in the two regions. |
来源
|
材料工程
,2022,50(3):43-49 【核心库】
|
DOI
|
10.11868/j.issn.1001-4381.2021.000297
|
关键词
|
激光直接沉积技术
;
CoCrFeNiMn
;
气孔
;
组织
;
拉伸性能
|
地址
|
1.
温州大学机电工程学院, 浙江, 温州, 325800
2.
萨马拉国立研究大学金属技术与航空材料系, 俄罗斯, 萨马拉, 443086
3.
中华人民共和国常熟海关, 江苏, 常熟, 215500
4.
昆明贵金属研究所, 稀贵金属综合利用国家重点实验室, 昆明, 650106
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1001-4381 |
学科
|
金属学与金属工艺 |
基金
|
国家自然科学基金项目
;
中国留学基金委项目
|
文献收藏号
|
CSCD:7181246
|
参考文献 共
29
共2页
|
1.
Yeh J W. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes.
Advanced Engineering Materials,2004,6(5):299-303
|
CSCD被引
1138
次
|
|
|
|
2.
Borkar T. A combinatorial assessment of AlxCrCuFeNi2 (0
CSCD被引
18
次
|
|
|
|
|
3.
Kang B. Superior mechanical properties and strengthening mechanisms of lightweight AlxCrNbVMo refractory high-entropy alloys (x=0, 0.5, 1.0) fabricated by powder metallurgy process.
Journal of Materials Science & Technology,2021,69:32-41
|
CSCD被引
9
次
|
|
|
|
4.
杨海欧. 单相CoCrFeNi高熵合金的组成元素对其在NaCl溶液中的耐蚀性能的影响.
金属学报,2018,54(6):905-910
|
CSCD被引
15
次
|
|
|
|
5.
Zhang Y. High-entropy alloys with high saturation magnetization, electrical resistivity and malleability.
Scientific Reports,2013,3(1):1-7
|
CSCD被引
8
次
|
|
|
|
6.
Xin S W. Bulk nanocrystalline borondoped VNbMoTaW high entropy alloys with ultrahigh strength, hardness, and resistivity.
Journal of Alloys and Compounds,2021,853:155995
|
CSCD被引
4
次
|
|
|
|
7.
董世知. TiC对氩弧熔覆FeAlCoCrCuTi_(0.4)高熵合金涂层组织和耐磨性影响.
材料科学与工程学报,2020,38(4):590-594
|
CSCD被引
4
次
|
|
|
|
8.
Li T X. Tungsten-containing high-entropy alloys: a focused review of manufacturing routes, phase selection, mechanical properties, and irradiation resistance properties.
Tungsten,2021,3(2):181-196
|
CSCD被引
9
次
|
|
|
|
9.
李天昕. 难熔高熵合金在反应堆结构材料领域的机遇与挑战.
金属学报,2021,57(1):44-56
|
CSCD被引
2
次
|
|
|
|
10.
Kim Y K. In-situ formed oxide enables extraordinary high-cycle fatigue resistance in additively manufactured CoCrFeMnNi high-entropy alloy.
Additive Manufacturing,2021,38:101832
|
CSCD被引
7
次
|
|
|
|
11.
He J Y. Precipitation behavior and its effects on tensile properties of FeCoNiCr high-entropy alloys.
Intermetallics,2016,79:41-52
|
CSCD被引
24
次
|
|
|
|
12.
阿卜杜喀迪尔·艾麦尔. 激光熔化沉积CrMnFeCoNi高熵合金组织和低温力学性能.
材料热处理学报,2020,41(3):70-75
|
CSCD被引
4
次
|
|
|
|
13.
Zhao Y Y. Thermal stability and coarsening of coherent particles in a precipitation-hardened(NiCoFeCr) 94Ti2Al4 high-entropy alloy.
Acta Materialia,2018,147:184-194
|
CSCD被引
20
次
|
|
|
|
14.
Zhang W. Improved corrosion resistance of reactive gas pulse sputtered (TiTaNbZrNi) N high entropy alloy coatings with a hybrid architecture of multilayered and compositionally graded structures.
Journal of Nuclear Materials,2021,543:152558
|
CSCD被引
1
次
|
|
|
|
15.
Otto F. The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy.
Acta Materialia,2013,61(15):5743-5755
|
CSCD被引
202
次
|
|
|
|
16.
Yim D. Fabrication and mechanical properties of TiC reinforced CoCrFeMnNi high-entropy alloy composite by water atomization and spark plasma sintering.
Journal of Alloys and Compounds,2019,781:389-396
|
CSCD被引
12
次
|
|
|
|
17.
Li R. Selective laser melting of an equiatomic CoCrFeMnNi high-entropy alloy: processability, non-equilibrium microstructure and mechanical property.
Journal of Alloys and Compounds,2018,746:125-134
|
CSCD被引
33
次
|
|
|
|
18.
Dovgyy B. Comprehensive assessment of the printability of CoNiCrFeMn in laser powder bed fusion.
Materials & Design,2020,194:108845
|
CSCD被引
2
次
|
|
|
|
19.
Xiang S. Microstructures and mechanical properties of CrMnFeCoNi high entropy alloys fabricated using laser metal deposition technique.
Journal of Alloys and Compounds,2019,773:387-392
|
CSCD被引
16
次
|
|
|
|
20.
Niu P. Hot cracking, crystal orientation and compressive strength of an equimolar CoCrFeMnNi high-entropy alloy printed by selective laser melting.
Optics & & Laser Technology,2020,127:106147
|
CSCD被引
6
次
|
|
|
|
|