帮助 关于我们

返回检索结果

激光直接沉积CoCrFeNiMn高熵合金:气孔-组织结构-拉伸性能之间的关系
Direct laser deposited CoCrFeNiMn high-entropy alloys: relationship between pores-microstructuretensile properties

查看参考文献29篇

苏传出 1,2   陈希章 1 *   Sergey Konovalov 1,2   卢淑媛 3   闻明 4   王艳虎 1,2  
文摘 采用激光直接沉积技术成功制备等原子CoCrFeNiMn高熵合金。研究沿试样沉积高度方向上的气孔的大小、数量和组织结构及室温(293K)和低温(77,200K)下试样的拉伸性能。结果表明:CoCrFeNiMn合金表现出定向结晶规律,在合金底部区域晶界处形成伴有长形气孔的树枝状柱状晶,随着区域靠近试样顶部,晶粒形态转变为等轴晶粒。而在试样顶部区域,气孔形状呈圆形且数量大大降低。比较在77,200K和293K温度下的合金的相应拉伸性能可知:试样顶部区域选取的77K拉伸试样具有更好的性能,但在中部区域的293K拉伸试样和在底部区域中的200K拉伸试样的伸长率相似,这是由于试样不同的气孔率和组织结构的差异所致。
其他语种文摘 The equiatomic CoCrFeNiMn high entropy alloys (HEAs)has been successfully manufactured using direct laser deposition(DLD)technique.The size and number of porosities,the microstructures along the height of samples and the tensile properties of DLDed HEAs prepared under room (293K)and cryogenic temperatures(77Kand 200K)were investigated.The results show that DLDed HEAs exhibit directional solidification,forming dendritic columnar grains with long pores at the grain boundary in bottom regions and transiting to equiaxed grains close to top regions.And in the top regions,the pores are round and the numbers are greatly reduced.Compared with tensile properties of DLDed HEAs,the 77 K tensile samples cut from the top region have better performance,but the elongation of 293Ktensile samples in the middle region and 200Ktensile samples in the bottom region are similar,owing to the difference of porosity and microstructure in the two regions.
来源 材料工程 ,2022,50(3):43-49 【核心库】
DOI 10.11868/j.issn.1001-4381.2021.000297
关键词 激光直接沉积技术 ; CoCrFeNiMn ; 气孔 ; 组织 ; 拉伸性能
地址

1. 温州大学机电工程学院, 浙江, 温州, 325800  

2. 萨马拉国立研究大学金属技术与航空材料系, 俄罗斯, 萨马拉, 443086  

3. 中华人民共和国常熟海关, 江苏, 常熟, 215500  

4. 昆明贵金属研究所, 稀贵金属综合利用国家重点实验室, 昆明, 650106

语种 中文
文献类型 研究性论文
ISSN 1001-4381
学科 金属学与金属工艺
基金 国家自然科学基金项目 ;  中国留学基金委项目
文献收藏号 CSCD:7181246

参考文献 共 29 共2页

1.  Yeh J W. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Advanced Engineering Materials,2004,6(5):299-303 CSCD被引 1138    
2.  Borkar T. A combinatorial assessment of AlxCrCuFeNi2 (0 CSCD被引 18    
3.  Kang B. Superior mechanical properties and strengthening mechanisms of lightweight AlxCrNbVMo refractory high-entropy alloys (x=0, 0.5, 1.0) fabricated by powder metallurgy process. Journal of Materials Science & Technology,2021,69:32-41 CSCD被引 9    
4.  杨海欧. 单相CoCrFeNi高熵合金的组成元素对其在NaCl溶液中的耐蚀性能的影响. 金属学报,2018,54(6):905-910 CSCD被引 15    
5.  Zhang Y. High-entropy alloys with high saturation magnetization, electrical resistivity and malleability. Scientific Reports,2013,3(1):1-7 CSCD被引 8    
6.  Xin S W. Bulk nanocrystalline borondoped VNbMoTaW high entropy alloys with ultrahigh strength, hardness, and resistivity. Journal of Alloys and Compounds,2021,853:155995 CSCD被引 4    
7.  董世知. TiC对氩弧熔覆FeAlCoCrCuTi_(0.4)高熵合金涂层组织和耐磨性影响. 材料科学与工程学报,2020,38(4):590-594 CSCD被引 4    
8.  Li T X. Tungsten-containing high-entropy alloys: a focused review of manufacturing routes, phase selection, mechanical properties, and irradiation resistance properties. Tungsten,2021,3(2):181-196 CSCD被引 9    
9.  李天昕. 难熔高熵合金在反应堆结构材料领域的机遇与挑战. 金属学报,2021,57(1):44-56 CSCD被引 2    
10.  Kim Y K. In-situ formed oxide enables extraordinary high-cycle fatigue resistance in additively manufactured CoCrFeMnNi high-entropy alloy. Additive Manufacturing,2021,38:101832 CSCD被引 7    
11.  He J Y. Precipitation behavior and its effects on tensile properties of FeCoNiCr high-entropy alloys. Intermetallics,2016,79:41-52 CSCD被引 24    
12.  阿卜杜喀迪尔·艾麦尔. 激光熔化沉积CrMnFeCoNi高熵合金组织和低温力学性能. 材料热处理学报,2020,41(3):70-75 CSCD被引 4    
13.  Zhao Y Y. Thermal stability and coarsening of coherent particles in a precipitation-hardened(NiCoFeCr) 94Ti2Al4 high-entropy alloy. Acta Materialia,2018,147:184-194 CSCD被引 20    
14.  Zhang W. Improved corrosion resistance of reactive gas pulse sputtered (TiTaNbZrNi) N high entropy alloy coatings with a hybrid architecture of multilayered and compositionally graded structures. Journal of Nuclear Materials,2021,543:152558 CSCD被引 1    
15.  Otto F. The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy. Acta Materialia,2013,61(15):5743-5755 CSCD被引 202    
16.  Yim D. Fabrication and mechanical properties of TiC reinforced CoCrFeMnNi high-entropy alloy composite by water atomization and spark plasma sintering. Journal of Alloys and Compounds,2019,781:389-396 CSCD被引 12    
17.  Li R. Selective laser melting of an equiatomic CoCrFeMnNi high-entropy alloy: processability, non-equilibrium microstructure and mechanical property. Journal of Alloys and Compounds,2018,746:125-134 CSCD被引 33    
18.  Dovgyy B. Comprehensive assessment of the printability of CoNiCrFeMn in laser powder bed fusion. Materials & Design,2020,194:108845 CSCD被引 2    
19.  Xiang S. Microstructures and mechanical properties of CrMnFeCoNi high entropy alloys fabricated using laser metal deposition technique. Journal of Alloys and Compounds,2019,773:387-392 CSCD被引 16    
20.  Niu P. Hot cracking, crystal orientation and compressive strength of an equimolar CoCrFeMnNi high-entropy alloy printed by selective laser melting. Optics & & Laser Technology,2020,127:106147 CSCD被引 6    
引证文献 4

1 赵森林 Al_(1.2)Co_xCrFeNi高熵合金的相形成规律及其力学性能 材料工程,2023,51(5):104-111
CSCD被引 6

2 王勇刚 选区激光熔化AlCoCrCuFeNi高熵合金的高温氧化行为研究 稀有金属材料与工程,2023,52(6):2154-2160
CSCD被引 0 次

显示所有4篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号