一种改进的原油价格组合预测优化策略研究
An improved research on optimization strategy of crude oil price forecast combination
查看参考文献25篇
文摘
|
由于原油的重要性以及原油价格序列的非线性和复杂性,原油价格预测备受关注.组合预测是一项利用多个子模型提供的有用信息产生综合预测从而提高预测准确性的技术.原油价格组合预测研究的主要问题是如何有效地构建具有多样性的子模型,并确定最优组合权重.本文提出一种改进的原油价格组合预测模型.首先,采用多种特征选择技术,包括过滤式,包装式和嵌入式三大类方法,筛选出影响原油价格波动的关键因素.然后,基于不同特征选择方法筛选出的不同特征子集,结合多元线性回归,人工神经网络和支持向量回归预测模型,构建混合预测模型.在此基础上,提出一种动态粒子群优化算法,该算法能够搜索最优组合权值,并捕捉其在时间维度上的动态变化.实验结果表明,本文提出的动态组合预测模型能较大程度地降低计算复杂度,提高原油价格预测性能. |
其他语种文摘
|
Crude oil price forecasting received much attention due to its importance and the non-linearity and complexity of crude oil price series.Using the useful information provided by sub-model to generate comprehensive prediction,forecast combination aims to improve the forecasting accuracy.It is significant how to efficiently generate many diverse sub-models and weighting vector.In this paper,we first introduced various feature selection techniques,including filter,wrapper and embedded methods to determine the key factors affecting crude oil prices.Then,individual models are constructed by incorporating feature selection methods with multiple linear regression,artificial neural network and support vector regression model.Finally,a dynamic particle swarm optimization algorithm is proposed.The algorithm can search for the optimal weighting vector and capture the dynamic changes of weighting series.Experimental results show that the proposed dynamic forecast combination model can reduce the computational complexity and improve the forecasting performance. |
来源
|
系统工程理论与实践
,2021,41(10):2660-2668 【核心库】
|
DOI
|
10.12011/SETP2019-1965
|
关键词
|
原油价格
;
特征选择
;
组合预测
;
动态粒子群优化算法
|
地址
|
1.
中国科学院数学与系统科学研究院, 北京, 100190
2.
中国科学院大学, 北京, 100190
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1000-6788 |
学科
|
社会科学总论 |
基金
|
国家自然科学基金
;
国家能源集团能源需求与终端能源消费结构预测模型研究项目
|
文献收藏号
|
CSCD:7082796
|
参考文献 共
25
共2页
|
1.
Wang Y. Forecasting the real prices of crude oil using forecast combinations over time-varying parameter models.
Energy Economics,2017,66:337-348
|
CSCD被引
5
次
|
|
|
|
2.
Chen Y. Forecasting crude oil prices: A deep learning based model.
Procedia Computer Science,2017,122:300-307
|
CSCD被引
5
次
|
|
|
|
3.
Yu L. LSSVR ensemble learning with uncertain parameters for crude oil price forecasting.
Applied Soft Computing,2016,56:692-701
|
CSCD被引
3
次
|
|
|
|
4.
Toparli E A. The impact of oil prices on the stock returns in Turkey: A TVP-VAR approach.
Physica A: Statistical Mechanics and its Applications,2019,535:372-392
|
CSCD被引
2
次
|
|
|
|
5.
张跃军. 投资者关注度对国际原油价格波动的影响研究.
系统工程理论与实践,2020,40(10):2519-2529
|
CSCD被引
9
次
|
|
|
|
6.
Zhang Y J. Volatility forecasting of crude oil market: Can the regime switching GARCH model beat the single-regime GARCH models.
International Review of Economics Finance,2019,59:302-317
|
CSCD被引
5
次
|
|
|
|
7.
Mu X Q. Petroleum futures prices' short-term forecasting based on SVR.
Science Technology and Engineering,2010,10(18):4585-4589
|
CSCD被引
1
次
|
|
|
|
8.
Ding Y. A novel decompose-ensemble methodology with AIC-ANN approach for crude oil forecasting.
Energy,2018,154:328-336
|
CSCD被引
4
次
|
|
|
|
9.
王珏. 基于网络关注度的大宗商品市场预测研究.
系统工程理论与实践,2017,37(5):1163-1171
|
CSCD被引
7
次
|
|
|
|
10.
孙林. 一种基于邻域粗糙集的多标记专属特征选择方法.
计算机科学,2018,45(1):173-178
|
CSCD被引
4
次
|
|
|
|
11.
Wang J. Feature selection by maximizing independent classification information.
IEEE Transactions on Knowledge & Data Engineering,2017,29(4):828-841
|
CSCD被引
13
次
|
|
|
|
12.
Abedinia O. A new feature selection technique for load and price forecast of electrical power systems.
IEEE Transactions on Power Systems,2016,32(1):62-74
|
CSCD被引
14
次
|
|
|
|
13.
Wang L L. Hybrid feature selection method for tumor gene based on spark.
Computer Engineering,2018,44(11):1-6
|
CSCD被引
1
次
|
|
|
|
14.
常春云. 基于Lasso特征选择的自闭症预测.
北京生物医学工程,2017,36(6):564-569
|
CSCD被引
2
次
|
|
|
|
15.
Ludwig N. Putting Big Data analytics to work: Feature selection for forecasting electricity prices using the LASSO and random forests.
Journal of Decision Systems,2015,24(1):19-36
|
CSCD被引
2
次
|
|
|
|
16.
唐小我. 最优组合预测方法及其应用.
数理统计与管理,1992(1):31-35
|
CSCD被引
26
次
|
|
|
|
17.
Xiao L. A combined model based on multiple seasonal patterns and modified firefly algorithm for electrical load forecasting.
Applied Energy,2016,167:135-153
|
CSCD被引
6
次
|
|
|
|
18.
赵曙光. 基于遗传算法的证券投资组合模型的优化及最优解的测定.
科技信息,2013(16):122-124
|
CSCD被引
1
次
|
|
|
|
19.
Huang Q. Research of combined forecasting model based on improved PSO.
CEA,2015,51(14):258-263
|
CSCD被引
1
次
|
|
|
|
20.
Wang J. A semi-heterogeneous approach to combining crude oil price forecasts.
Information Sciences,2018,460:279-292
|
CSCD被引
3
次
|
|
|
|
|