帮助 关于我们

返回检索结果

基于μCT表征的SLM成形GH3536高温合金缺陷特征
Defect characteristics within SLM-fabricated GH3536superalloy dependence onμCT characterization

查看参考文献29篇

高祥熙 1,2,3 *   杨平华 1,2,3   乔海燕 1,2,3   张帅 1  
文摘 选择激光选区熔化(selective laser melting,SLM)工艺中不同激光功率和扫描速度的参数组合制备GH3536高温合金试样,采用μCT技术表征试样内部的孔隙率及缺陷特征,同时采用光学显微镜和扫描电镜验证缺陷类型,并分析熔池形貌。结果表明:SLM工艺参数与合金中缺陷特征和熔池形貌密切相关,优化参数组合时连续性熔池具有较大的长宽比、彼此搭接良好,同时成形试样的孔隙率远低于0.01%,存在随机分布、尺寸较小的气孔;偏离优化参数组合时不仅在间断性熔池界面形成了尺寸较大的孔洞,而且增加了SLM成形过程的不稳定性,形成了少量的未熔合,这两类缺陷均具有一定的各向异性;试样中还存在未能被μCT发现的微气孔和微裂纹。
其他语种文摘 GH3536superalloy samples were made by selective laser melting(SLM)with a parameter combination of laser power and scanning speed.The porosity and defect characteristics within the samples were characterized byμCT technique,and the defect types as well as the morphologies of molten pool were analyzed using optical microscope and scanning electron microscope.The results show that process parameters are closely related with defect characteristics and the morphologies of molten pool.As the laser power and scanning speed are optimized,continuous molten pool with a higher aspect ratio overlaps well with each other.The porosity in the fabricated samples is far less than 0.01%,and with randomly distributed small pores.When the deviation from the optimized process parameters occurs,not only larger voids are formed at the interface of discontinuous molten pool,but also the process instability are increased,resulting in the formation of minor amounts of lamellar lack of fusion.The latter two types of defects present a certain anisotropy.Additionally, smaller micropores and microcracks are beyond theμCT detection ability.
来源 材料工程 ,2022,50(10):63-72 【核心库】
DOI 10.11868/j.issn.1001-4381.2021.000475
关键词 激光选区熔化 ; GH3536合金 ; 缺陷 ; 各向异性 ; 熔池
地址

1. 中国航发北京航空材料研究院, 北京, 100095  

2. 航空材料检测与评价北京市重点实验室, 航空材料检测与评价北京市重点实验室, 北京, 100095  

3. 中国航空发动机集团材料检测与评价重点实验室, 中国航空发动机集团材料检测与评价重点实验室, 北京, 100095

语种 中文
文献类型 研究性论文
ISSN 1001-4381
学科 金属学与金属工艺
基金 国家自然科学基金面上项目
文献收藏号 CSCD:7340273

参考文献 共 29 共2页

1.  刘浩. 缺口对GH3536镍基高温合金蠕变性能的影响. 稀有金属材料与工程,2014,43(10):2473-2478 CSCD被引 9    
2.  Kruth J P. Binding mechanisms in selective laser sintering and selective laser melting. Rapid Prototyping Journal,2005,11(1):26-36 CSCD被引 72    
3.  Chi C N. Fabrication of magnesium using selective laser melting technique. Rapid Prototyping Journal,2011,17(6):479-490 CSCD被引 9    
4.  Sun J F. Mechanical properties of Ti6Al4Voctahedral porous material unit formed by selective laser melting. Advances in Mechanical Engineering,2012,4(9):742-760 CSCD被引 3    
5.  张学军. 3D打印技术研究现状和关键技术. 材料工程,2016,44(2):122-128 CSCD被引 119    
6.  Vrancken B. Heat treatment of Ti6Al4Vproduced by selective laser melting:microstructure and mechanical properties. Journal of Alloys and Compounds,2012,541:177-185 CSCD被引 129    
7.  Rafi H K. A comparison of the tensile,fatigue and fracture behavior of Ti-6Al-4Vand 15-5PH stainless steel parts made by selective laser melting. The International Journal of Advanced Manufacturing Technology,2013,69(5):1299-1309 CSCD被引 10    
8.  Brandl E. Additive manufactured AlSi10Mg samples using selective laser melting(SLM):microstructure,high cycle fatigue and fracture behavior. Materials & Design,2012,34(1):159-169 CSCD被引 62    
9.  Bean G E. Build orientation effects on texture and mechanical properties of selective laser melting inconel 718. Journal of Materials Engineering and Performance,2019,28(4):1942-1949 CSCD被引 5    
10.  赵志国. 激光选区熔化成形技术的发展现状及研究进展. 航空制造技术,2014(19):46-49 CSCD被引 34    
11.  巩水利. 高能束流加工技术的应用研究与发展. 航空制造技术,2009(14):34-39 CSCD被引 3    
12.  Leuders S. On the mechanical behavior of titanium alloy TiAl6V4manufactured by selective laser melting:fatigue resistance and crack growth performance. International Journal of Fatigue,2013,48:300-307 CSCD被引 85    
13.  Mezzetta J. Microstructure-properties relationships of Ti-6Al-4Vparts fabricated by selective laser melting. International Journal of Precision Engineering and Manufacturing-Green Technology,2018,5(5):605-612 CSCD被引 2    
14.  Cain V. Crack propagation and fracture toughness of Ti6Al4Valloy produced by selective laser melting. Additive Manufacturing,2015,5:68-76 CSCD被引 34    
15.  Vilaro T. As-fabricated and heat-treated microstructures of the Ti-6Al-4Valloy processed by selective laser melting. Metallurgical Materials Transactions A,2011,42(10):3190-3199 CSCD被引 66    
16.  Zhang L. Effect of processing parameters on thermal behavior and related density in GH_3536alloy manufactured by selective laser melting. Journal of Materials Research,2019,34(8):1-10 CSCD被引 1    
17.  孙闪闪. 热处理对激光选区熔化GH3536合金组织演变规律的影响研究. 机械工程学报,2020,56(21):208-218 CSCD被引 14    
18.  石磊. 热等静压/热处理工艺对激光选区熔化成形GH4169合金微观组织与拉伸性能的影响. 材料工程,2020,48(6):148-155 CSCD被引 9    
19.  宗学文. 激光选区熔化GH3536镍基高温合金的微观组织和晶体取向. 稀有金属材料与工程,2020,49(9):3182-3188 CSCD被引 10    
20.  Thompson A. X-ray computed tomography for additive manufacturing:a review. Measurement Science and Technology,2016,27:1-16 CSCD被引 1    
引证文献 3

1 杨瑞宁 定向铸造镍基高温合金Hf夹杂的特征及成因 材料工程,2023,51(10):51-58
CSCD被引 0 次

2 张学军 航空典型金属材料增材制造组织、缺陷、表面、构型研究进展 航空材料学报,2024,44(1):1-14
CSCD被引 4

显示所有3篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号