磷酸盐氧同位素示踪环境中磷的来源与转化:原理、方法与应用
Tracing the Source and Transformation of Phosphorus in the Environment Using Phosphate Oxygen Isotope: Principle, Method and Application
查看参考文献71篇
文摘
|
磷是地表环境中重要的生命元素。由于研究手段的限制,目前有关磷生物地球化学循环过程及机制的认识仍然匮乏。作为一种新兴示踪剂,磷酸盐氧同位素(δ~(18)O_p)成为当前研究磷生物地球化学循环的潜在有效工具。本文综述了δ~(18)O_p示踪环境中磷来源与循环的基础原理,不同环境介质中δ~(18)O_p的分离纯化及测试方法的研究进展,梳理了近年来δ~(18)O_p在环境科学领域的应用,重点是土壤、沉积物和水生生态系统(河流、湖泊和海洋)。在此基础上,提出了δ~(18)O_p在未来工作上的展望:进一步扩展δ~(18)O_p分析测试技术(如低磷、高溶解有机质的样品),在藻类、微生物体系中分馏效应的探索。 |
其他语种文摘
|
Phosphorus is an important life element in the earth surface environment. Due to the limitation of research methods, the understanding of phosphorus biogeochemical cycle process and mechanism is still lacking. Phosphate oxygen isotope (δ~(18)O_p), as a new tracer, has become a potential effective tool for studying the phosphorus biogeochemical cycle. In this study, the basic principle of δ~(18)O_p tracing the source and circulation of phosphorus in the environment, the separation and purification of different media and the research progress of testing methods are summarized. Its application in the biogeochemical cycle of phosphorus in environmental science is reviewed. This paper focuses on the application of δ~(18)O_p technology in soil/sediment and aquatic ecosystem (rivers, lakes, oceans) in recent years. On this basis, the prospect of δ~(18)O_p in the future work is put forward: the further improvement and expansion of δ~(18)O_p technology (such as low phosphorus, high dissolved organic matter samples); the exploration of fractionation effect in algae and microbial system. |
来源
|
地球与环境
,2021,49(3):325-335 【核心库】
|
DOI
|
10.14050/j.cnki.1672-9250.2021.49.066
|
关键词
|
磷酸盐氧同位素(δ~(18)O_p)
;
来源示踪
;
生物地球化学循环
;
土壤和沉积物
;
水生生态系统
|
地址
|
1.
贵州大学资源与环境工程学院, 贵阳, 550025
2.
中国科学院地球化学研究所, 环境地球化学国家重点实验室, 贵阳, 550081
3.
中国科学院大学, 北京, 100049
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1672-9250 |
学科
|
环境科学基础理论 |
基金
|
中国科学院战略先导B类专项
;
国家自然科学基金面上项目
|
文献收藏号
|
CSCD:6989728
|
参考文献 共
71
共4页
|
1.
Karl D M. Aquatic ecology: Phosphorus, the staff of life.
Nature,2000,406(6791):31-33
|
CSCD被引
19
次
|
|
|
|
2.
Yuan Z W. Human perturbation of the global phosphorus cycle: Changes and consequences.
Environmental Science & Technology,2018,52(5):2438-2450
|
CSCD被引
9
次
|
|
|
|
3.
Harrison J A. Modeling phosphorus in rivers at the global scale: Recent successes, remaining challenges, and near-term opportunities.
Current Opinion in Environmental Sustainability,2019,36:68-77
|
CSCD被引
3
次
|
|
|
|
4.
Macintosh K A. Managing diffuse phosphorus at the source versus at the sink.
Environmental Science & Technology,2018,52(21):11995-12009
|
CSCD被引
8
次
|
|
|
|
5.
秦伯强. 浅水湖泊湖沼学与太湖富营养化控制研究.
湖泊科学,2020,32(5):1229-1243
|
CSCD被引
68
次
|
|
|
|
6.
张金流. 溶解磷酸盐氧同位素示踪剂研究进展及展望.
环境科学与技术,2015,38(11):21-26
|
CSCD被引
2
次
|
|
|
|
7.
Davies C L. Phosphate oxygen isotopes within aquatic ecosystems: Global data synthesis and future research priorities.
Science of the Total Environment,2014,496:563-575
|
CSCD被引
6
次
|
|
|
|
8.
Liang Y. Oxygen isotope fractionation between apatite and aqueous-phase phosphate: 20-45°C.
Chemical Geology,2007,238(1/2):121-133
|
CSCD被引
6
次
|
|
|
|
9.
Zheng Y F. Oxygen isotope fractionations involving apatites: Application to paleotemperature determination.
Chemical Geology,1996,127(1/3):177-187
|
CSCD被引
10
次
|
|
|
|
10.
Zheng Y F. Oxygen isotope fractionation in phosphates: The role of dissolved complex anions in isotope exchange.
Isotopes in Environmental & Health Studies,2015,52(1/2):47-60
|
CSCD被引
1
次
|
|
|
|
11.
Jaisi D P. Fractionation of oxygen isotopes in phosphate during its interactions with iron oxides.
Geochimica et Cosmochimica Acta,2010,74(4):1309-1319
|
CSCD被引
5
次
|
|
|
|
12.
Yuan H. Identifying sources and cycling of phosphorus in the sediment of a shallow freshwater lake in China using phosphate oxygen isotopes.
Science of the Total Environment,2019,676:823-833
|
CSCD被引
2
次
|
|
|
|
13.
Ishida T. Identification of phosphorus sources in a watershed using a phosphate oxygen isoscape approach.
Environmental Science & Technology,2019,53:4707-4716
|
CSCD被引
6
次
|
|
|
|
14.
Granger S J. The oxygen isotopic composition of phosphate in river water and its potential sources in the Upper River Taw catchment, UK.
Science of the Total Environment,2017,574:680-690
|
CSCD被引
4
次
|
|
|
|
15.
Young M B. Characterizing the oxygen isotopic composition of phosphate sources to aquatic ecosystems.
Environmental Science & Technology,2009,43(14):5190-5196
|
CSCD被引
14
次
|
|
|
|
16.
Elsbury K E. Using oxygen isotopes of phosphate to trace phosphorus sources and cycling in Lake Erie.
Environmental Science & Technology,2009,43(9):3108-3114
|
CSCD被引
19
次
|
|
|
|
17.
Blake R E. Biogeochemical cycling of phosphorus: Insights from oxygen isotope effects of phosphoenzyme-es.
American Journal of Science,2005,305(6/8):596-620
|
CSCD被引
19
次
|
|
|
|
18.
McLaughlin K. Phosphate oxygen isotope ratios as a tracer for sources and cycling of phosphate in North San Francisco Bay, California.
Journal of Geophysical Research Biogeosciences,2006,111(G3):G03003
|
CSCD被引
13
次
|
|
|
|
19.
Blake R E. Oxygen isotope systematics of biologically mediated reactions of phosphate: I. Microbial degradation of organophosphorus compounds.
Geochimica et Cosmochimica Acta,1997,61(20):4411-4422
|
CSCD被引
12
次
|
|
|
|
20.
Longinelli A. Revised phosphate-water isotopic temperature scale.
Earth & Planetary Science Letters,1973,19(3):373-376
|
CSCD被引
14
次
|
|
|
|
|