恢复热处理对定向合金γ′相再服役稳定性的影响
Effect of rejuvenation heat treatment on re-service aging stability of γ′phase in directionally solidified superalloy
查看参考文献23篇
文摘
|
以原始态和恢复态定向合金为研究对象,通过再服役高温时效和γ′相组织形貌观察,分析原始态和恢复态定向合金γ′相的时效稳定性,研究恢复参数对恢复态定向合金γ′相时效稳定性的影响。结果表明,恢复热处理可将蠕变损伤组织恢复到接近原始态定向合金状态。但相比于原始态定向合金,恢复态定向合金的枝晶干γ′相再服役时效稳定性较差,这与MC碳化物的分解密切相关。不同恢复热处理参数下获得的恢复态定向合金的时效稳定性差异较大。固溶温度越高,保温时间越短,冷却速率越大,恢复态定向合金的枝晶干γ′相时效速率越大;一次时效温度和保温时间越大,恢复态定向合金的枝晶干γ′相时效速率越小。二次时效条件对恢复态定向合金γ′相的时效稳定性无明显影响。 |
其他语种文摘
|
High temperature aging treatment was first conducted on the rejuvenated directionally solidified superalloy to simulate the re-service aging damage of turbine blades and the virgin directionally solidified superalloy respectively. Then reservice aging stability of γ′ phase in the virgin and rejuvenated directionally solidified superalloy was compared and analyzed, and the effect of different rejuvenation parameters on γ ′ phase microstructure of the rejuvenated directionally solidified superalloy after the same re-service aging time was studied. The results show that although rejuvenation heat treatment can effectively restore creep microstructure to a nearly ‘ ‘as-new ’ ’ condition, the re-service aging stability of γ ′ phase in the rejuvenated directionally solidified superalloy is worse than that of the virgin directionally solidified superalloy, which is attributed to the decomposition of MC carbide. The rejuvenation heat treatment parameters have a great influence on re-service aging stability of the rejuvenated directionally solidified superalloy. The re-service aging rate of γ′ phase in the rejuvenated directionally solidified superalloy becomes higher, the higher the solution temperature, the shorter the holding time and the greater the cooling rate after solution higher. However, the increased primary aging temperature and holding time cause the decrease of the re-service aging rate of γ′ phase in the rejuvenated directionally solidified superalloy. The second aging condition has no obvious effect on the reservice aging stability of γ′ phase. |
来源
|
航空材料学报
,2021,41(4):109-118 【核心库】
|
DOI
|
10.11868/j.issn.1005-5053.2020.000175
|
关键词
|
定向合金
;
恢复热处理
;
γ′相
;
再服役
;
时效稳定性
|
地址
|
西安热工研究院有限公司燃气轮机技术部, 西安, 710054
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1005-5053 |
学科
|
金属学与金属工艺 |
基金
|
华能集团总部科技项目
;
国家自然科学基金项目
|
文献收藏号
|
CSCD:7041422
|
参考文献 共
23
共2页
|
1.
张健. 重型燃气轮机定向结晶叶片的材料与制造工艺.
中国材料进展,2013,32(1):12-38
|
CSCD被引
14
次
|
|
|
|
2.
Sun F. Microstructural evolution and deformation features in gas turbine blades operated in-service.
Journal of Alloys and Compounds,2015,618:728-733
|
CSCD被引
14
次
|
|
|
|
3.
Tawancy H M. Comparative performance of turbine blades used in power generation: damage vs microstructure and superalloy composition selected for the application.
Engineering Failure Analysis,2014,46:76-91
|
CSCD被引
6
次
|
|
|
|
4.
陈亚东. 基于微观组织演变的DZ125定向凝固高压涡轮叶片服役温度场的评估方法研究.
金属学报,2016,52(12):1545-1556
|
CSCD被引
10
次
|
|
|
|
5.
李辉. GTD111(DSM11)合金γ'粗化与持久性能.
动力与能源用高温结构材料-第十一届中国高温合金年会论文集,2012
|
CSCD被引
1
次
|
|
|
|
6.
唐文书. 蠕变损伤DZ411合金恢复热处理组织演化.
航空材料学报,2019,39(1):70-78
|
CSCD被引
5
次
|
|
|
|
7.
Hosseini S S. Microstructural evolution in damaged IN738LC alloy during various steps of rejuvenation heat treatments.
Journal of Alloys and Compounds,512(1):340-350
|
CSCD被引
9
次
|
|
|
|
8.
Zhang J. Study on rejuvenation heat treatment of a directionally-solidified superalloy DZ125 damaged by creep.
Acta Metallurgica Sinica,2016,52(6):717-726
|
CSCD被引
1
次
|
|
|
|
9.
Ruttertt B. Rejuvenation of creep resistance of a Ni-base single-crystal superalloy by hot isostatic pressing.
Materials and Design,2017,134:418-420
|
CSCD被引
5
次
|
|
|
|
10.
Yao Z. Effect of rejuvenation heat treatments on gamma prime distributions in a Ni based superalloy for power plant applications.
Materials Science and Technology,2013,29(7):775-780
|
CSCD被引
6
次
|
|
|
|
11.
Zhou Y. Effects of HIP temperature on the microstructural evolution and property restoration of a Ni-based superalloy.
Materials and Design,2013,52:981-986
|
CSCD被引
1
次
|
|
|
|
12.
Hosseini S S. Microstructural evolution in damaged IN738LC alloy during various steps of rejuvenation heat treatments.
Journal of Alloys and Compounds,2012,512(1):340-350
|
CSCD被引
9
次
|
|
|
|
13.
Wang X M. Morphological evolution of γ' precipitate under various rejuvenation heat treatment cycles in a damaged nickel-based superalloy.
Rare Metals,2016,3:1-10
|
CSCD被引
1
次
|
|
|
|
14.
Lee H S. Microstructural changes by heat treatment for single crystal superalloy exposed at high temperature.
Journal of Alloys and Compounds,2013,561(5):135-141
|
CSCD被引
11
次
|
|
|
|
15.
Turazi A. Study of GTD-111 superalloy microstructural evolution during high-temperature aging and after rejuvenation treatments.
Metallography, Microstructure,and Analysis,2015,24(4):3-12
|
CSCD被引
1
次
|
|
|
|
16.
Lvova E. A comparison of aging kinetics of new and rejuvenated conventionally cast GTD-111 gas turbine blades.
JMEPEG,2007,16:254-264
|
CSCD被引
10
次
|
|
|
|
17.
Lvova E. Influence of serviceinduced microstructural changes on the aging kinetics of rejuvenated Ni-based superalloy gas turbine blades.
JMEPEG,2001,10:299-312
|
CSCD被引
16
次
|
|
|
|
18.
Polsilapa S. Long-term gamma prime phase stability after various heat treatment conditions with temperature dropping during solution treatment in cast nickel base superalloy, grade Inconel-738.
Materials Science Forum,2016,891:420-425
|
CSCD被引
1
次
|
|
|
|
19.
Kim H I. Microstructural investigation of GTD 111DS materials in the heat treatment conditions.
Journal of Mechanical Science and Technology,2012,26:2019-2022
|
CSCD被引
7
次
|
|
|
|
20.
Dadkhah A. On the precipitation hardening of the directionally solidified GTD-111 Ni base superalloy:microstructures and mechanical properties.
Materials Science & Engineering:A,2017,685:79-86
|
CSCD被引
2
次
|
|
|
|
|