帮助 关于我们

返回检索结果

生产力指数模型PI在北方土壤生产力评价中的应用
Applied Productivity Index Model (PI) in Soil Productivity Assessment of Northern China

查看参考文献33篇

文摘 土壤生产力评价是土地生产力评价的一个重要方法,对土壤生产力进行科学合理的定量评价具有重要意义.论文以中国北方4个耕地类型区为研究区域,选用全国第二次土壤普查成果中44个典型剖面的土层厚度、容重、机械组成、有机质含量、pH值和作物产量数据,建立了新的PI模型并对PI值与产量进行回归分析,以证明PI模型是较好的土壤生产力评价模型.研究结果表明:①东北黑土区、北方平原区、北方山地丘陵区、黄土高原区的PI均值分别为0.377、0.198、0.202和0.172,说明东北黑土区土壤生产力最高,黄土高原区最低;②在各区内部,Pl值与作物产量之间均呈十分显著的线性关系,其回归方程的决定系数变化范围在0.589~0.743,均能通过显著性水平为0.005的检验,表明PI模型可用于区内土壤生产力评价;③回归直线的重合性检验表明,不同类型区PI值与产量的回归方程有显著差异,但北方平原区和北方山地丘陵区在显著性水平为0.05时可将PI值与产量进行统一回归.土地生产力区间差异主要由气候因素造成,而区内差异主要是由土壤因素造成.该模型的不足之处就在于未考虑不同耕地类型区之间不同的气候因素,这一点有待于继续探讨.但是对于耕地类型区内部来说,PI模型不失为一个比较好的土壤生产力评价模型.
其他语种文摘 The soil productivity assessment is an important method of the land productivity assessment , and it is significant to make a quantitative evaluation of soil productivity assessment scientifically and reasonably. In order to prove the Productivity Index (PI) model available in four different cultivated land type regions in northern China, i. e. , the black soil region of northeast Chi-na(Type Ⅰ) , the plain region of northern China(Type Ⅱ) , the mountain/hilly region of northern China (Type Ⅲ) and the Loess Plateau region (Type Ⅳ) , the data of soil thickness, bulk density, mechanical composition, organic matter content and crop yields of 44 soil profiles(12 soil profiles in Type Ⅰ region, 10 in Type Ⅱ region, 12 in Type Ⅲ region and 10 in Type Ⅳ region) in the second nationwide general soil survey was used to establish a new PI model and analyze the linear regression relations between PI values and crop yields in this study. The results demonstrated that: (1) the average PI values in Type Ⅰ to Type IV region were 0. 377, 0. 198, 0. 202 and 0. 172 respectively. It is indicated that the Type Ⅰ region was the best land productivity region whereas the Type Ⅳ region was the worst. The variances of the four regions were 0. 028, 0. 009, 0.003 and 0. 002. The larger variance of the Type Ⅰ region is due to the greater change in its organic matter. (2 ) The PI values and crop yields were in significant linear correlation in all these regions and the determination coefficients of their regression equations were 0. 684, 0. 743, 0. 589 and 0. 703, which can pass the significant test ( P < 0. 005 ). It is illustrated that the new PI model is valid in soil productivity assessment in each region. (3 ) Regression lines from various regions differ obviously in the regression lines coincidence test while the Type Ⅰ and Type HI regions share similar regression lines at 0. 05 significant level. This is because the climates are very different among the four cultivated land type regions, but the climates between the Type Ⅱ and the Type Ⅲ regions are similar, which lead to the similar physio-chemical properties of soils in the two regions. So, the climate diversities determine different soil productivities among the four regions and the soil factor affects the land productivity in each region. This model did not take the differences of climates in the four regions into consideration, which was the deficiency of this model, and further studies need to be carried out. For all that, the brief PI model is practicable in assessing soil productivity in each region.
来源 自然资源学报 ,2009,24(4):708-717 【核心库】
关键词 土壤生产力 ; 土壤生产力评价 ; PI模型 ; 中国北方耕地类型区 ; 土壤理化性质
地址

北京师范大学地理学与遥感科学学院, 地表过程与资源生态国家重点实验室, 北京, 100875

语种 中文
文献类型 研究性论文
ISSN 1000-3037
学科 农业基础科学
基金 国家科技支撑计划项目 ;  国家自然科学基金
文献收藏号 CSCD:3515834

参考文献 共 33 共2页

1.  . 中国农业百科全书·土壤卷,1996:240 被引 1    
2.  Klingebiel A A. Agriculture Handbook[No.210],1962 被引 1    
3.  FAO. A Framework for Land Evaluation[soil Bulletin,No.32],1976 被引 1    
4.  中国1:100万土地资源图编图委员会. <中国1:100万土地资源图>编图制图规范,1990 被引 1    
5.  . TD/T 1004-2003.农用地分等规程 被引 2    
6.  冷疏影. 地理信息系统支持下的中国农业生产潜力研究. 自然资源学报,1992,7(1):71-79 被引 34    
7.  李鹏. 黄土高原沟坡地土地生产力评价的指标体系与评价方法. 土壤与环境,2001,10(4):301-306 被引 6    
8.  Pierce F J. Productivity of soil:Assessing oflong-tenn changes due to erosion. Journal of Soil and Water Conservation,1983,38:39-44 被引 18    
9.  Williams J R. EPIC a new method for assessing erosion's effects on soil productivity. Journal of Soil and Water Conservation,1983,38(5):381-383 被引 121    
10.  Vermeulen S J. Use of SCUAF model to simulate natural miombo woodland and maize monocuhure ecosystems in Zimbabwe. Agroforestry Systems,1993,22:259-271 被引 3    
11.  Srinivasan B. Integrating a basin-scale water quality model with GIS. Water Resources,1994,30:453-462 被引 1    
12.  Neill L L. An Evaluation of Soil Productivity Based on Boot Growth and Water Depletion(M.S.Thesis),1979 被引 1    
13.  刘秉正. 泥河沟流域土壤养分变化与生产力评价. 水土保持研究,2000,7(1):18-22 被引 6    
14.  贾锐鱼. 黄土高原南部水土流失降低土壤生产力的评价. 西北林学院学报,2004,19(3):77-81 被引 11    
15.  刘海斌. 黄土塬区复合型生态农业土地生产力评价. 农业工程学报,2006,22(6):77-81 被引 4    
16.  李光录. 黄土高原南部土地生产力及其与侵蚀的关系. 干旱地区农业研究,2007,25(4):42-46 被引 7    
17.  . NY/T 309-1996.全国耕地类型区、耕地地力等级划分 被引 2    
18.  全国土壤普查办公室. 中国土种志(第二卷),1994 被引 16    
19.  全国土壤普查办公室. 中国土种志(第四卷),1995 被引 18    
20.  全国土壤普查办公室. 中国土种志(第五卷),1995 被引 12    
引证文献 7

1 成婧 渭北旱塬侵蚀退化土壤生产力的恢复与评价 中国水土保持科学(中英文),2013,11(3):6-11
被引 3

2 高畅 土壤生产力评价研究进展 河南农业科学,2013,42(4):14-18
被引 0 次

显示所有7篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号