开垦对海北高寒草甸土壤有机碳的影响
Effects of reclamation on soil organic carbon in Haibei alpine meadow
查看参考文献19篇
文摘
|
在中国科学院海北高寒草甸生态系统定位站地区,选择高寒草甸开垦后形成的农田(种植春油菜)作为研究对象,开垦年限分别为0、10、20和30年,利用土壤有机碳密度分组法,对0~10 cm、10~20 cm、20~30 cm、30~40 cm土层土壤有机碳(SOC)及不同组分(轻组有机碳LFOC,重组有机碳HFOC)含量及随开垦年限变化关系进行了研究.结果表明,高寒草甸开垦后土壤有机碳及其组分的变化主要发生在0~10 cm土层,LFOC下降最快,其次为HFOC和SOC,至30年时分别下降了48.63%、43.97%、37.64%.而0~40 cm土体内,SOC、LFOC和HFOC亦呈下降趋势,开垦30年,它们的下降速率分别为785.77、16.79和460.29 kg C·hm-2·yr-1.开垦将大大降低高寒草甸作为碳汇的功能,土壤碳库的总贮量由143 516.94 kg C·hm-2·yr-1下降至114 298.34 kg C·hm-2·yr-1,使其逆转为碳源. |
其他语种文摘
|
With rapeseed fields having been reclaimed from alpine meadow for 0, 10, 20 and 30 years at the Haibei Research Station, Chinese Academy of Sciences as test objects, this paper studied the changes of soil organic carbon (SOC) and its fractions including light fraction organic carbon (LFOC) and heavy fraction organic carbon (HFOC) in 0~10, 10~20, 20~30 and 30~40 cm soil layers with reclamation duration. The results showed that after the alpine meadow reclaimed, the changes of SOC and its fractions mainly occurred in 0~10 cm soil layer, with LFOC decreased most rapidly and followed by HFOC and SOC. After the conversion from alpine meadow to cropland for 30 years, the SOC, LFOC and HFOC in 0~10 soil layer decreased by 37.64%, 48.63% and 43.97%, and their decrement in 0~40 cm soil layer was 785.77, 16.79 and 460.29 kg C·hm-2·yr-1, respectively. The storage of soil carbon pool was decreased from 143 516.94 to 114 298.34 kg C·hm-2·yr-1. Reclamation made alpine meadow as a carbon sink turn into a carbon source. |
来源
|
生态学杂志
,2006,25(8):911-915 【核心库】
|
关键词
|
开垦
;
高寒草甸
;
农田
;
土壤有机碳
;
轻组有机碳
|
地址
|
1.
中国科学院西北高原生物研究所, 西宁, 810001
2.
中国科学院大气物理研究所, 北京, 100029
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1000-4890 |
学科
|
畜牧、动物医学、狩猎、蚕、蜂 |
基金
|
国家自然科学基金项目
;
中国科学院知识创新工程重大项目
;
中国科学院资源环境领域野外台站研究基金
|
文献收藏号
|
CSCD:2442818
|
参考文献 共
19
共1页
|
1.
严平. ~(137)Cs法测定青藏高原土壤风蚀的初步结果.
科学通报,2000,45(2):199-204
|
CSCD被引
50
次
|
|
|
|
2.
张金波. 土地利用方式对土壤碳库影响的敏感性评价指标.
生态环境,2003,12(4):500-504
|
CSCD被引
86
次
|
|
|
|
3.
陈伏生. 开垦对草甸土有机碳的影响.
土壤通报,2004,35(4):413-419
|
CSCD被引
17
次
|
|
|
|
4.
武天云. 耕作对黄土高原和北美大草原三种典型的农业土壤有机碳的影响.
应用生态学报,2003,14(12):2213-2218
|
CSCD被引
29
次
|
|
|
|
5.
程国栋.
气候变化对中国积雪、冰川和冻土的影响评价,1997:22-56
|
CSCD被引
15
次
|
|
|
|
6.
魏朝富. 紫色水稻土有机无机复合与土粒团聚的关系.
土壤学报,1996,33(1):70-77
|
CSCD被引
20
次
|
|
|
|
7.
Aguilar R. Effects of cultivation on soils in northern Great Plains rangeland.
Soil Sci Soc Am J,1988,52:1081-1085
|
CSCD被引
33
次
|
|
|
|
8.
Blair GJ. Soil C fractions based on their degree of oxidation and the development of a C management index for agricultural systems.
Aust J Agri Res,1995,46:1459-1466
|
CSCD被引
636
次
|
|
|
|
9.
Davidson EA. Changes in soil carbon inventories following cultivation of previously un-tilled soils.
Biogeochemistry,1993,20:161-193
|
CSCD被引
135
次
|
|
|
|
10.
Eswaran H.
Soil Sci Soc Am J,1993,57:192-194
|
CSCD被引
306
次
|
|
|
|
11.
Houghton RA. Changes in the storage of terrestrial carbon since 1850.
Soils and Global Change,1995:45-65
|
CSCD被引
32
次
|
|
|
|
12.
Janzen HH. Soil organic matter characteristics after long term cropping to various spring wheat rotations.
Can J Soil Sci,1987,67:845-856
|
CSCD被引
28
次
|
|
|
|
13.
Jendinson DS. Model estimated of CO2 emissions from soil in response to global warming.
Nature,1991,351:304-306
|
CSCD被引
1
次
|
|
|
|
14.
Post WM. Soil carbon and world life zones.
Nature,1982,298:156-159
|
CSCD被引
570
次
|
|
|
|
15.
Schlesinger WH. Carbon balance in terrestrial detritus.
Annu Rev Ecol Syst,1977,8:51-81
|
CSCD被引
105
次
|
|
|
|
16.
Schlesinger WH.
Soils and Global Change,1995:9-25
|
CSCD被引
26
次
|
|
|
|
17.
Stenvensen FJ. Humus Chemistry:Genesis.
Composition,1994:1-24
|
CSCD被引
1
次
|
|
|
|
18.
Tiessen HJ. Cultivation effects on the amount and concentration of carbon nitrogen and phosphorus in grass s land soil.
Agron J,1982,74:831
|
CSCD被引
8
次
|
|
|
|
19.
WBGU Special Report.
The accounting of biological sinks and sources under the Kyoto Protocol,1998
|
CSCD被引
3
次
|
|
|
|
|