离焦量误差对相位差法波前重构的影响
The Effect of Uncertainty in Defocus Distance on the Wave-front Reconstruction with the Phase-diversity Algorithm
查看参考文献13篇
文摘
|
相位差法波前探测是利用焦面和已知像差函数及像差尺度的离焦位置上同时采集的一对短曝光图像,通过最优化方法使代价函数最小化,从而得到目标和波前相位估计值的渡前探测方法.本文通过计算机模拟了像差函数为离焦像差的情况下,经相位差法波前探测成像系统后在焦面和离焦面上采集得到的图像强度分布,采用有限内存拟牛顿法(LFBGS)对模拟图像进行数值求解,实现了渡前相位的重构和对面源目标的重建;由于在实际应用中测量误差和机械加工带来的离焦量偏差是不可避免的,因此在模拟实验中就离焦量尺度不精确的情况进行了分析. |
其他语种文摘
|
The phase-diversity algorithm is a wave-front sensing technique for obtaining estimates of both the precise object image and the distribution of wave fronts. It involves the simultaneous collection of a pair of short-exposure images: one is the typical focal-plane image and the other is the aberrated image on a defocused plane (with known aberration functions and aberration scales there). With these images, one can use the optimization theory to minimize the cost function to recover the precise image of object as well as the phase aberration. In this paper, based on the phase-diversity algorithm, we numerically simulate the intensity distributions of the focal-plane image and aberrated image under the circumstances that the uncertainty of the aberration function is due to defocus. We further implement the wave-front reconstruction and image recovery of the simulated extended scenes (object) by applying a limited-memory BFGS method to deal with the optimization problem. Owing to the errors in measurement and mechanical manufacturing, the uncertainty in defocus distance is practically inevitable. So in the simulation of this paper, we study and analyze the effect of such an uncertainty on the wave-front reconstruction with the phase-diversity algorithm. |
来源
|
天文研究与技术
,2009,6(1):43-50 【核心库】
|
关键词
|
波前重构
;
图像重建
;
相位差法波前探测
|
地址
|
中国科学院国家天文台云南天文台, 云南, 昆明, 650011
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1672-7673 |
学科
|
自动化技术、计算机技术 |
基金
|
国家自然科学基金委员会-中国科学院“天文联合基金”
;
国家自然科学基金重点项目
|
文献收藏号
|
CSCD:3511213
|
参考文献 共
13
共1页
|
1.
R A Gonsalves. Wavefront sensing by phase retrieval.
SPIE.207,1979:32-39
|
CSCD被引
5
次
|
|
|
|
2.
R A Carreras. Concurrent computation of Zernike coefficients used in a Phase Diversity algorithm for optical aberration correction.
SPIE.2315,1994:363-370
|
CSCD被引
3
次
|
|
|
|
3.
Jean J Dolne. Fundamental performance bounds of phase diversity blind deconvolution algorithm for various diversity polynomials,noise statisties,and scene size.
SPIE.5793,2005:118-128
|
CSCD被引
1
次
|
|
|
|
4.
Jean J Dolne. Information theoretic bounds of phase diversity for diversity polynomials and noise statistics.
SPIE.5896,2005:145-156
|
CSCD被引
1
次
|
|
|
|
5.
Jean J Dolne. Information theoretic bounds for determining optimum aberration strengths for various diversity polynomials and noise statistics for phase diversity.
SPIE.5896,2005:5896011-12
|
CSCD被引
1
次
|
|
|
|
6.
R G Paxman. Joint estimation of object and aberrations by using phase diversity.
Optical Society of American A,1992,A9:1072-1085
|
CSCD被引
1
次
|
|
|
|
7.
L Meynadier. Noise Propagation in Wave-Front Sensing with Phase Diversity.
Appl.Opt,1999,38:4967-4979
|
CSCD被引
6
次
|
|
|
|
8.
C R Vogel. Fast algorithms for phase-diversity-based blind deconvolution.
SPIE.3353,1998:994-1005
|
CSCD被引
4
次
|
|
|
|
9.
C R Vogel. A limited memory BFGS method for an inverse problem in atmospheric imaging.
Methods and Applications of Inversion.Lecture Notes in Earth Sciences,2000:292-304
|
CSCD被引
1
次
|
|
|
|
10.
Luc Gilles. Computational Methods for a Large-Scale Inverse Problem Arising in Atmospheric Optics.
Inverse Problems,2002,18:237-252
|
CSCD被引
4
次
|
|
|
|
11.
H Engl.
Regularization of Inverse Problems,1996
|
CSCD被引
9
次
|
|
|
|
12.
M C Roggemann.
Imaging Through Turbulence,1996
|
CSCD被引
34
次
|
|
|
|
13.
吴祈宗.
运筹学与最优化方法,2005
|
CSCD被引
1
次
|
|
|
|
|