金属-氟聚物机械活化含能材料的研究进展
Research Progress in Metal-fluoropolymer Mechanical Activation Energetic Composites
查看参考文献63篇
文摘
|
从金属-氟聚物机械活化含能材料(MAECs)的最新发展出发,介绍了金属-氟聚物的能量特性,分析了该类材料的能量优势及释能机理;总结了微米级金属-氟聚物的典型缺点为组分间的扩散距离较大导致的能量释放速率低;对比了纳米铝粉的使用、反应材料微器件的设计、机械活化处理等能量释放速率调节方法,分析了机械活化工艺的优越性;综述了金属-氟聚物机械活化含能材料在机械活化工艺、反应机制、爆轰性能及其应用方面的研究状况;评述了金属-氟聚物机械活化含能材料的研究现状和不足,对未来的发展趋势进行了展望。附参考文献64篇。 |
其他语种文摘
|
Embarked from the recent development of metal-fluoropolymer mechanical activation energetic composites(MAECs),the energy properties of metal-fluoropolymer were introduced,the energy advantages and release mechanism were analyzed.The typical defects of metal-fluoropolymer were summarized as the low energy release rate caused by the large diffusion distance between two components.The method of adjusting the energy release rate was compared,such as the use of nano aluminum powder,design of the micro device of reaction materials and the mechanical activation treatment.The superiority of mechanical activation was also analyzed.The research status of the mechanical activation process,reaction mechanism,detonation performance and application of MAECs was reviewed. The present status and problems of the research on MAECs of metal-fluorine polymer were evaluated,and the future development trend was also discussed.With 64 references. |
来源
|
火炸药学报
,2017,40(5):8-14 【核心库】
|
DOI
|
10.14077/j.issn.1007-7812.2017.05.002
|
关键词
|
机械活化含能材料
;
MAECs
;
高能量密度材料
;
爆轰性能
;
纳米铝粉
;
高能炸药
;
金属-氟聚物
;
能量释放速率
|
地址
|
西安近代化学研究所, 陕西, 西安, 710065
|
语种
|
中文 |
文献类型
|
综述型 |
ISSN
|
1007-7812 |
学科
|
武器工业;化学工业 |
基金
|
国家自然科学基金项目
|
文献收藏号
|
CSCD:6103362
|
参考文献 共
63
共4页
|
1.
Agrawal J P. Recent trends in high energy materials.
Progress in Energy and Combustion Science,1998,24:1-30
|
CSCD被引
37
次
|
|
|
|
2.
Pagoria P F. A review of energetic materials synthesis.
Thermochimica Acta,2002,384:187-204
|
CSCD被引
144
次
|
|
|
|
3.
Tarver C M. Chemical kinetic modeling of HMX and TATB laser ignition tests.
Journal of Energetic Materials,2004,22(2):93-107
|
CSCD被引
1
次
|
|
|
|
4.
Brill T B. Kinetics and mechanisms of thermal decomposition of nitroaromatic explosives.
Chemical Reviews,1993,93(8):2667-2692
|
CSCD被引
32
次
|
|
|
|
5.
Rozenband V I. A strength model of heterogeneous ignition of metal particles.
Combustion and Flame,1992,88(1):113-118
|
CSCD被引
12
次
|
|
|
|
6.
Trunov M A. Effect of polymorphic phase transformations in Al_2O_3 film on oxidation kinetics of aluminum powders.
Combustion and Flame,2005,140(4):310-318
|
CSCD被引
43
次
|
|
|
|
7.
Trunov M A. Effect of polymorphic phase transformations in alumina layer on ignition of aluminium particles.
Combustion Theory and Modelling,2006,10(4):603-623
|
CSCD被引
36
次
|
|
|
|
8.
Kazakov Y V. Mathematical modeling of ignition in dusty gases.
Archivum Combustionis,1987,7(1/2):7-17
|
CSCD被引
1
次
|
|
|
|
9.
Granqvist C G. Ultrafine metal particles.
Journal of Applied Physics,1976,47(5):2200-2219
|
CSCD被引
27
次
|
|
|
|
10.
Puszynski J A. Formation,characterization,and reactivity of nanoenergetic powders.
Proceedings of the 29 th International Pyrotechnics Seminar,2002
|
CSCD被引
1
次
|
|
|
|
11.
Schefflan R. Formation of aluminum nanoparticles upon condensation from vapor phase for energetic applications.
Journal of Energetic Materials,2006,24(2):141-156
|
CSCD被引
2
次
|
|
|
|
12.
Pivkina A. Plasma synthesized nano-aluminum powders:structure,thermal properties and combustion behavior.
Journal of Thermal Analysis and Calorimetry,2006,86(3):733-738
|
CSCD被引
6
次
|
|
|
|
13.
Munz R J. Application of transferred arcs to the production of nanoparticles.
Pure and Applied Chemistry,1999,71(10):1889-1897
|
CSCD被引
3
次
|
|
|
|
14.
Phillips J.
Manufacture of spherical metal nanoparticles by plasma heating of precursor aerosol for vapor condensation:US,6689192B120040210,2004
|
CSCD被引
1
次
|
|
|
|
15.
Champion Y. Evaporation and condensation for metallic nanopowders.
Annales de Chimie (Cachan, France),2006,31(3):281-294
|
CSCD被引
1
次
|
|
|
|
16.
Miziolek A W. Nanoenergetics:an emerging technology area of national importance.
The AMPTIAC Newsletter,2002,6(1):43-48
|
CSCD被引
2
次
|
|
|
|
17.
黄辉. 含纳米级铝粉的复合炸药研究.
火炸药学报,2002,25(2):1-3
|
CSCD被引
37
次
|
|
|
|
18.
Sippel T R.
Mechanically activated metal fuels for energetic materials applications: US,9227883,2016
|
CSCD被引
1
次
|
|
|
|
19.
Pantoya M L. The influence of alumina passivation on nano-Al/teflon reactions.
Thermochimica Acta,2009,493:109-110
|
CSCD被引
15
次
|
|
|
|
20.
Wang J. Core-shell Alpolytetrafluoroethylene(PTFE)configurations to enhance reaction kinetics and energy performance for nanoenergetic materials.
Chemistry:A European Journal,2016,22(1):279-284
|
CSCD被引
20
次
|
|
|
|
|