帮助 关于我们

返回检索结果

基于直方图均衡化图像增强的两种改进方法
Two Improved Methods Based on Histogram Equalization for Image Enhancement

查看参考文献25篇

文摘 直方图均衡化(Histogram Equalization,HE)是图像增强领域中基础性很强的方法,对其研究和改进工作至关重要.首先,本文分析了经典HE算法的缺点,也概括了五类基于直方图均衡化的图像增强技术,然后针对HE经典算法的缺点提出了两种改进方法,分别引入了直方图动态削峰技术和边缘信息融合技术,最后选取曝光不足和过曝光的两类图像验证算法的性能,采取了有效的图像客观质量评价指标对实验结果做出评价.结合主客观图像质量评价可以看出,本文提出的算法具有增强效果好、输入参数少等特点.
其他语种文摘 HE (Histogram Equalization) is a fundamental method in the field of image enhancement,the research and improvement about which is very significant.First,this paper analyzes the disadvantages of the classical HE algorithm and summarizes five kinds of image enhancement techniques based on HE.Then,two kinds of improved methods are proposed aiming at the disadvantages of the classical HE algorithm,the techniques of the peak clipping and the edge information fusion are introduced.Finally,underexposure and overexposure images are selected to verify the algorithms' properties,the standard of efficient image objective quality assessment is selected to evaluate the experimental results.The assessment of image subjective and objective quality shows the algorithms this paper proposes have the characteristics of better results,less input parameters and so on.
来源 电子学报 ,2018,46(10):2367-2375 【核心库】
DOI 10.3969/j.issn.0372-2112.2018.10.009
关键词 图像增强 ; 直方图均衡化 ; 子直方图均衡化 ; 极大值搜索 ; 动态削峰 ; 边缘锐化 ; 信息融合
地址

大连海事大学信息科学技术学院, 辽宁, 大连, 116026

语种 中文
文献类型 研究性论文
ISSN 0372-2112
学科 电子技术、通信技术
基金 国家科技支撑计划项目 ;  国家自然科学基金 ;  中央高校基本科研业务费专项资金
文献收藏号 CSCD:6364776

参考文献 共 25 共2页

1.  章毓晋. 图像工程(上册):图像处理(3版),2012 CSCD被引 1    
2.  丁畅. “直方图”均衡化图像增强技术研究综述. 计算机工程与应用,2017,53(23):12-17 CSCD被引 13    
3.  Parihar A S. Fuzzy-Contextual contrast enhancement. IEEE Transactions on Image Processing,2017,26(4):1810-1819 CSCD被引 9    
4.  梁琳. 光照不均图像增强方法综述. 计算机应用研究,2010,27(5):1625-1628 CSCD被引 49    
5.  何林远. 基于亮度反馈的彩色雾霾图像增强算法. 电子学报,2015,43(10):1978-1983 CSCD被引 5    
6.  方帅. 基于光照估计的夜间图像去雾. 电子学报,2016,44(11):2569-2575 CSCD被引 9    
7.  Kim Y T. Contrast enhancement using brightness preserving bi-histogram equalization. IEEE Transactions on Consumer Electronics,1997,43(1):1-8 CSCD被引 109    
8.  Wang Y. Image enhancement based on equal area dualistic sub-image histogram equalization Method. IEEE Transactions on Consumer Electronics,1999,45(1):68-75 CSCD被引 43    
9.  Chen S D. Minimum mean brightness error bi-histogram equalization in contrast enhancement. IEEE Transactions on Consumer Electronics,2003,49(4):1310-1319 CSCD被引 38    
10.  Chen S D. Contrast enhancement using recursive mean-separate histogram equalization for scalable brightness preservation. IEEE Transactions on Consumer Electronics,2003,49(4):1301-1309 CSCD被引 35    
11.  Singh K. Contrast enhancement via texture region based histogram equalization. Journal of Modern Optics,2016(15):1-7 CSCD被引 9    
12.  Celik T. Automatic image equalization and contrast enhancement using Gaussian mixture modeling. IEEE Transactions on Image Processing,2012,21(1):145-156 CSCD被引 19    
13.  Stark J A. Adaptive image contrast enhancement using generalizations of histogram equalization. IEEE Transactions on Image Processing,2000,9(5):889-896 CSCD被引 125    
14.  Ooi C H. Bi-Histogram equalization with a plateau limit for digital image enhancement. IEEE Transactions on Consumer Electronics,2009,55(4):2072-2080 CSCD被引 13    
15.  Wang Q. Fast image/video contrast enhancement based on weighted thresholded histogram equalization. IEEE Transactions on Consumer Electronics,2007,53(2):757-764 CSCD被引 33    
16.  Liang K. A new adaptive contrast enhancement algorithm for infrared images based on double plateaus histogram equalization. Infrared Physics & Technology,2012,55(4):309-315 CSCD被引 27    
17.  吴成茂. 可调直方图均衡化的正则解释及其改进. 电子学报,2011,39(6):1278-1284 CSCD被引 9    
18.  Wang C. Brightness preserving histogram equalization with maximum entropy:a variational perspective. IEEE Transactions on Consumer Electronics,2005,51(4):1326-1334 CSCD被引 23    
19.  Liu B. Contrast enhancement using non-overlapped sub-blocks and local histogram projection. IEEE Transactions on Consumer Electronics,2011,57(2):583-588 CSCD被引 4    
20.  Kim J Y. An advanced contrast enhancement using partially overlapped sub-block histogram equalization. IEEE Transactions on Circuits and Systems for Video Technology,2001,1(4):475-484 CSCD被引 126    
引证文献 25

1 郭钰璐 融合边缘信息的对比度增强算法 红外技术,2019,41(7):616-622
CSCD被引 3

2 陈永 基于双域分解的多尺度深度学习单幅图像去雾 光学学报,2020,40(2):0210003
CSCD被引 0 次

显示所有25篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号