GTP酶激活蛋白MoGcs1参与调控稻瘟病菌的无性繁殖,附着胞分化及对外界胁迫的应答
GTPase activating protein MoGcs1 is important for asexual development,appressorium differentiation and stress response in the rice blast fungus Magnaporthe oryzae
查看参考文献25篇
文摘
|
稻瘟病菌(Magnaporthe oryzae)引起的稻瘟病是水稻上的一种毁灭性真菌病害,每年导致的稻谷产量损失可养活6千万人口。从分子水平了解该病菌的致病机理,对新型药剂靶标的挖掘和病害防控策略的制定具有重要的理论和实践指导意义。生物体存在两类GTP结合蛋白,一类是异三聚体G蛋白,另一类是小G蛋白。小G蛋白分子量为20~ 30 KD,具有GTP酶活性,在多种细胞反应中具有分子开关作用。小G蛋白结合GTP时被激活,可作用于下游分子使之活化。当GTP水解成为GDP时,则恢复为非活化状态。细胞中存在一些专门控制小G蛋白活性的调节因子,如鸟嘌呤核苷酸交换因子(guanine nucleotide exchange factor,GEF)和GTP酶激活蛋白(GTPase activating protein,GAP)。GEF能够催化GTP的转换,而GAP的作用是加速GTP的水解,使小G蛋白向失活的状态转变。本研究在稻瘟病菌中鉴定到一个GAP蛋白MoGcs1,并对该蛋白编码基因的生物学功能进行了研究。对MoGCS1基因进行敲除突变发现,ΔMogcs1突变体产孢量显著下降,分生孢子形态异常,且附着胞形成加快,但突变体的营养生长和致病能力与野生型比较无明显变化。进一步研究发现,突变体对外界盐胁迫敏感性升高,对细胞壁胁迫敏感性降低。上述结果表明,MoGcs1是稻瘟病菌生长发育过程中一个重要的蛋白,参与调控病菌的无性繁殖、附着胞分化及对外界胁迫的应答。 |
其他语种文摘
|
Rice blast,caused by Magnaporthe oryzae,is one of the most devastating fungal diseases of rice worldwide. In eukaryotes,there are two kinds of GTP binding proteins,one is heterotrimeric G protein,and the other is small GTPase protein. Small GTPase proteins have GTPase hydrolysis activity with a molecular weight of 20~30 KD,and play as a molecular switch in multiple cellular responses. Small GTPase proteins are active when bound to GTP and can thus activate the downstream proteins. When GTP hydrolyzes to GDP,small GTPase protein returns to its inactivated status. There are many proteins such as GEF and GAP,controlling the activity of small GTPase proteins in the organisms. In this study,we identified and characterized a GAP protein in M. oryzae,named MoGcs1. Targeted gene deletion of MoGCS1 showed that MoGCS1 plays crucial roles in asexual development,conidial morphology,appressorium formation and stress responses,but the gene showed no roles in growth and pathogenicity. The results indicated that MoGcs1 is a key GAP protein of the rice blast fungus. |
来源
|
植物病理学报
,2016,46(1):17-26 【核心库】
|
DOI
|
10.13926/j.cnki.apps.2016.01.003
|
关键词
|
小G蛋白
;
GAP
;
无性繁殖
;
附着胞分化
;
胁迫应答
|
地址
|
南京农业大学植物保护学院, 农业部作物病虫害监测与防控重点开放实验室, 南京, 210095
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0412-0914 |
学科
|
植物保护 |
基金
|
国家教育部高等学校博士学科点专项科研基金
|
文献收藏号
|
CSCD:5653980
|
参考文献 共
25
共2页
|
1.
Valent B. Molecular genetic analysis of the rice blast fungus,Magnaporthe grisea.
Annual Review of Phytopathology,1991,29:443-467
|
CSCD被引
42
次
|
|
|
|
2.
Dean R A. The genome sequence of the rice blast fungus Magnaporthe grisea.
Nature,2005,434:980-986
|
CSCD被引
162
次
|
|
|
|
3.
Hamer J E. A mechanism for surface attachment in spores of a plant pathogenic fungus.
Science,1988:288-290
|
CSCD被引
22
次
|
|
|
|
4.
Talbot N J. On the trail of a cereal killer:Exploring the biology of Magnaporthe grisea.
Annual Reviews in Microbiology,2003,57:177-202
|
CSCD被引
99
次
|
|
|
|
5.
Nichols B J. SNAREs and membrane fusion in the Golgi apparatus.
Biochimica et Biophysica Acta (BBA)-Molecular Cell Research,1998,1404:9-31
|
CSCD被引
1
次
|
|
|
|
6.
D'Souza-Schorey C. ARF proteins:Roles in membrane traffic and beyond.
Nature Reviews Molecular Cell Biology,2006,7:347-358
|
CSCD被引
31
次
|
|
|
|
7.
Matozaki T. Small G-protein networks:Their crosstalk and signal cascades.
Cellular Signalling,2000,12:515-524
|
CSCD被引
10
次
|
|
|
|
8.
Phi Poon P. Retrograde transport from the yeast Golgi is mediated by two ARF GAP proteins with overlapping function.
EMBO Journal,1999,18:555-564
|
CSCD被引
4
次
|
|
|
|
9.
Zhang C J. Four ARF GAPs in Saccharomyces cerevisiae have both overlapping and distinct functions.
Yeast,2003,20:315-330
|
CSCD被引
1
次
|
|
|
|
10.
Chen J S. Rac1 is required for pathogenicity and Chm1-dependent conidiogenesis in rice fungal pathogen Magnaporthe grisea.
PLoS Pathogens,2008,4:e1000202
|
CSCD被引
5
次
|
|
|
|
11.
Zheng W. A Cdc42 ortholog is required for penetration and virulence of Magnaporthe grisea.
Fungal Genetics and Biology,2009,46:450-460
|
CSCD被引
6
次
|
|
|
|
12.
Ye W Y. Putative Rho-GAP proteins orchestrate vegetative growth,conidiogenesis and pathogenicity of the rice blast fungus Magnaporthe oryzae.
Fungal Genetics and Biology,2014,67:37-50
|
CSCD被引
3
次
|
|
|
|
13.
Kumar S. MEGA3:Integrated software for molecular evolutionary genetics analysis and sequence alignment.
Briefings in Bioinformatics,2004,5:150-163
|
CSCD被引
973
次
|
|
|
|
14.
Tamura K. MEGA4:Molecular evolutionary genetics analysis (MEGA) software version 4.0.
Molecular Biology and Evolution,2007,24:1596-1599
|
CSCD被引
2004
次
|
|
|
|
15.
Dou X Y. MoVam7,a conserved SNARE involved in vacuole assembly,is required for growth,endocytosis,ROS accumulation, and pathogenesis of Magnaporthe oryzae.
PLoS One,2011,6:e16439
|
CSCD被引
6
次
|
|
|
|
16.
Zhang H F. Eight RGS and RGS-like proteins orchestrate growth,differentiation, and pathogenicity of Magnaporthe oryzae.
PLoS Pathogens,2011,7:e1002450
|
CSCD被引
13
次
|
|
|
|
17.
Kim S T. Secretome analysis of differentially induced proteins in rice suspension-cultured cells triggered by rice blast fungus and elicitor.
Proteomics,2009,9:1302-1313
|
CSCD被引
14
次
|
|
|
|
18.
Shi Z. Genetic analysis of sporulation in Magnaporthe grisea by chemical and insertional mutagenesis.
Molecular Plant-Microbe Interactions,1995,8:949-959
|
CSCD被引
8
次
|
|
|
|
19.
Shi Z. Interactions between spore morphogenetic mutations affect cell types,sporulation, and pathogenesis in Magnaporthe grisea.
Molecular Plant-Microbe Interactions,1998,11:199-207
|
CSCD被引
4
次
|
|
|
|
20.
Zhou Z. Conidiophore stalk-less1 encodes a putative zinc-finger protein involved in the early stage of conidiation and mycelial infection in Magnaporthe oryzae.
Molecular Plant-Microbe Interactions,2009,22:402-410
|
CSCD被引
4
次
|
|
|
|
|