贵州省湿地碳储量与碳中和潜力分析
Analysis of the carbon stock and carbon neutral potential of wetlands in Guizhou Province
查看参考文献60篇
文摘
|
湿地作为缓解气候变化的关键生态系统,在碳捕获与碳封存方面发挥着不可替代的作用。湿地碳储量和影响因素的分析以及固碳潜力的预测,对湿地生态保护与管理、国家"双碳"目标实现具有重要意义。应用Arc- GIS10.8对《贵州省湿地保护发展规划》(以下简称规划)的3个时期(分别是:1999-2009年;2010-2018年;2018年至今)湿地分布图采用遥感目视解译的方式进行矢量化并根据贵州省岩溶发育强度进行分区。采用生命带研究法与生物量估算法等对贵州省湿地面积和碳储量变化进行估算分析,对重要湿地碳储量与单位面积碳储量进行估算并与全省湿地进行对比,采用固碳潜力计算模型对贵州省重要湿地固碳潜力进行估算,应用Origin软件对各相关影响因子进行数据分析。结果表明:①贵州省湿地规划前期的面积为216 526.95 hm~2,规划中期面积为209 726.85 hm~2、规划后期面积为255 440.53 hm~2,总体表现为先下降再升高,总体面积增加38 913.58 hm~2;②贵州省湿地碳储量变化为:规划前期为5.97×10~5 t,规划后期为3.78×10~6 t,是规划前期的6倍以上,碳储量增加明显。其中,贵州省重要湿地碳储量为3.24×10~6 t,占全省湿地碳储量85.71%,固碳潜力十分显著;③贵州省重要湿地的固碳潜力为1.14×10~4 t C/a,预计到2030和2060年,湿地总固碳量分别达到7.99×10~6 t C和8.34×10~6 t C;④温度、DIC浓度、有机碳含量与面积对贵州省重要湿地的碳储量影响较大,重要湿地碳储量与DIC浓度、有机碳含量以及面积呈正相关,而与温度呈负相关关系。对贵州省的湿地碳储量估算与碳中和潜力分析不仅可以了解贵州省湿地碳封存现状,还可为区域湿地生态系统在"3060"双碳目标的贡献上提供理论参考。 |
其他语种文摘
|
As a key ecosystem for climate change mitigation, wetlands play an irreplaceable role in carbon capture and sequestration. The analysis of wetland carbon stocks and their influencing factors, as well as the prediction of carbon sequestration potential, are of great significance to the conservation and management of wetlands and the achievement of the national "double carbon" target.This study employed ArcGIS 10.8 to vectorize the wetland distribution map of the Wetland Protection and Development Plan of Guizhou Province (hereinafter referred to as the Plan) for three periods (1999-2009, 2010-2018, and 2018- present, respectively) by means of remote sensing visual interpretation and zoned them according to the intensity of karst development in Guizhou Province. The changes in wetland area and carbon stock in Guizhou Province were estimated and analyzed using the life belt research method and biomass estimation method, and the total carbon stock and carbon stock per unit area of key wetlands were estimated and compared with those of all wetlands in Guizhou Province. A calculation model was used to estimate the carbon sequestration potential of the key wetlands in Guizhou Province.The Origin software was applied to analyze the data on all relevant impact factors. The results showed that: ①The area of wetlands in Guizhou Province was 216,526.95 hm~2, 209,726.85 hm~2, and 255,440.53 hm~2 in the pre-, mid-, and late-planning periods, respectively, with an overall decrease and then increase, and the total area increased by 38,913.58 hm~2; ② The wetland carbon stock in Guizhou Province was 3.78×10~6 t in the late stage of planning,increasing significantly to more than 6 times of that in the early stage of planning(5.97×10~5 t), among which the carbon stock of the key wetlands was 3.24×10~6 t, accounting for 85.71% of the province's wetland carbon stock; ③ The carbon sequestration potential of the keywetlands in Guizhou Provincewas 1.14×10~4 t C/a, and the total carbon sequestration of wetlands is expected to reach 7.99×10~6 t C and 8.34×10~6 t C by 2030 and 2060, respectively; and ④ The carbon stock of the key wetlands was positively correlated with DIC concentration, organic carbon content and wetland area and negatively correlated with temperature, indicating thattemperature, DIC concentration, organic carbon content and wetland area had a strong influence on the carbon stock of the key wetlands in Guizhou Province.The results of this study will not only facilitate the understanding of the current status of wetland carbon sequestration in Guizhou Province but also provide a theoretical reference for the contribution of regional wetland ecosystems to the "3060" dual carbon target. |
来源
|
地质科技通报
,2023,42(2):315-326 【核心库】
|
DOI
|
10.19509/j.cnki.dzkq.tb20220358
|
关键词
|
湿地
;
碳储量
;
碳中和
;
固碳潜力
;
贵州省
;
湿地规划
|
地址
|
1.
贵州财经大学, 贵阳, 550025
2.
中国科学院地球化学研究所, 环境地球化学国家重点实验室, 贵阳, 550081
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
2096-8523 |
学科
|
环境科学基础理论 |
基金
|
贵州省项目
;
贵州财经大学校级科研基金项目
|
文献收藏号
|
CSCD:7460775
|
参考文献 共
60
共3页
|
1.
申霞. 滨海盐沼净碳汇能力研究方法综述.
生态学杂志,2022,41(4):792-803
|
CSCD被引
7
次
|
|
|
|
2.
方精云. 中国陆地生态系统固碳效应——中国科学院战略性先导科技专项“应对气候变化的碳收支认证及相关问题”之生态系统固碳任务群研究进展.
中国科学院院刊,2015,30(6):848-857,875
|
CSCD被引
65
次
|
|
|
|
3.
Ito A. Impacts of future climate change on the carbon budget of northern high-latitude terrestrial ecosystems: An analysis using ISI-MIP data.
Polar Science,2016,10(3):346-355
|
CSCD被引
9
次
|
|
|
|
4.
陈波. 基于CCM机制的水生碳泵效应协同富营养化缓解研究进展.
贵州师范大学学报:自然科学版,2022,40(2):19-26
|
CSCD被引
5
次
|
|
|
|
5.
殷婕. 中国陆地生态系统植硅体碳汇潜力估算研究进展.
贵州师范大学学报:自然科学版,2022,40(2):27-33,80
|
CSCD被引
6
次
|
|
|
|
6.
陈静. 中国岩溶湿地生态水文过程研究进展.
地质科技情报,2019,38(6):221-230
|
CSCD被引
20
次
|
|
|
|
7.
米楠. 宁夏旱区湿地生态系统碳汇功能研究.
干旱区资源与环境,2013,27(7):52-55
|
CSCD被引
7
次
|
|
|
|
8.
Kodaira H. Responding to climate change and expectations for research.
Paddy and Water Environment,2014,12(2):211-212
|
CSCD被引
5
次
|
|
|
|
9.
Houghton J T.
IPCC climate change:The IPCC scientific assessment,1990
|
CSCD被引
1
次
|
|
|
|
10.
Bernal B. A comparison of soil carbon pools and profiles in wetlands in Costa Rica and Ohio.
Ecological Engineering,2008,34(4):311-323
|
CSCD被引
24
次
|
|
|
|
11.
McLeod E. A blueprint for blue carbon:Toward an improved understanding of the role of vegetated coastal habitats in sequestering CO_2.
Frontiers in Ecology and the Environment,2011,9(10):552-560
|
CSCD被引
151
次
|
|
|
|
12.
李博. 白洋淀湿地典型植被芦苇储碳固碳功能研究.
农业环境科学学报,2009,28(12):2603-2607
|
CSCD被引
27
次
|
|
|
|
13.
梅雪英. 长江口湿地海三棱蔗草(Scirpus mariqueter)的储碳、固碳功能研究——以崇明东滩为例.
农业环境科学学报,2007,26(1):360-366
|
CSCD被引
30
次
|
|
|
|
14.
国家林业局.
中国湿地资源贵州篇,2015
|
CSCD被引
1
次
|
|
|
|
15.
卢玲.
基于世界土壤数据库(HWSD)的中国土壤数据集(V1.1),2019
|
CSCD被引
3
次
|
|
|
|
16.
徐丽. 2010s中国陆地生态系统碳密度数据集.
中国科学数据:中英文网络版,2019,4(1):90-96
|
CSCD被引
48
次
|
|
|
|
17.
韩贵琳. 贵州喀斯特地区河流的研究--碳酸盐岩溶解控制的水文地球化学特征.
地球科学进展,2005,20(4):394-406
|
CSCD被引
72
次
|
|
|
|
18.
陈毅凤. 贵州草海湖泊系统碳循环简单模式.
湖泊科学,2001,13(1):15-20
|
CSCD被引
22
次
|
|
|
|
19.
倪茂飞. 典型喀斯特城市湖库溶解性有机质成分特征及来源解析.
环境科学,2022,43(7):3552-3561
|
CSCD被引
8
次
|
|
|
|
20.
蒋翼. 贵州三岔河流域平寨水库水化学特征及控制因素.
环境工程,2020,38(2):41-47
|
CSCD被引
5
次
|
|
|
|
|