沉积物磷原位钝化技术研究进展
Research Progress of Sediments Phosphorus In-situ Inactivation
查看参考文献67篇
文摘
|
水体磷含量是湖泊富营养化最主要的限制因子之一。伴随着湖泊流域工农业发展,外源污染物的长期输入致使沉积物中蓄积了大量的磷及其他污染物。湖泊沉积物一方面是水体磷重要的汇,但另一方面还是水体磷重要的源。在单纯控制湖泊外源污染条件下,沉积物磷的释放仍可导致水体持续富营养化,湖水水质得到明显改善通常需要数十年,因此控制湖泊沉积物内源污染释放是快速恢复湖泊水质必不可少的措施。沉积物内源污染控制技术包括生物修复、环保疏浚以及原位钝化技术。受水深等环境条件限制,生物修复技术和环保疏浚在深水、亚深水型湖泊难以实施。沉积物磷原位钝化技术具有生态、经济、快速和效果稳定等特点,在控制湖泊底泥内源污染中可望发挥重要作用,尤其适合于深水、亚深水型湖泊内源污染控制。系统阐述了不同沉积物原位钝化剂的钝化原理,对比分析了铝盐、铁盐、钙盐和粘度矿物作为磷钝化剂的优缺点和应用条件,概述了国内外沉积物原位钝化技术的应用现状,在此基础上提出了沉积物原位钝化技术未来的重点研究方向:一是研究发展新型钝化剂;二是因地制宜,探索适合不同类型湖泊的底泥原位钝化技术体系;三是加强底泥原位钝化技术与其他技术的联合应用研究与示范;四是加强钝化剂负面影响评价,建立科学的应用技术方案。 |
其他语种文摘
|
Phosphorus (P) is one of the limited factors for eutrophication. With the industrial and agricultural development,a large amount of phosphorus and other pollutants enter and accumulate in sediments. Sediments play an important role in overall phosphorus (P) cycling in lake ecosystem,which are thought to act both as a sink and a source of P due to continuous transport of P across the sediment-water interface. Phosphorus can be released from sediments into overlying water under certain environmental conditions,which may have a significant impact on water quality and result in continuing eutrophication. Under the condition of pure exogenous pollution control,the lake water will be improved in at least tens of years. To improve water quality,it is necessary to promote to reduce phosphorus sources in upstream tributaries and the phosphorus release from sediments. Many methods are used for restraining of P release from sediments,such as bioremediation,strategic dredging and in-situ inactivation technology. For the restriction of water depth,bioremediation and strategic dredging can not reduce the P releasing from sediments effectively. Sediments repaired with inactivation agents can improve the water quality. In-situ inactivation technology will play an important role in sediments,especially for the sub-deep lakes sediments,reparation. Inactivation agents are used for restraining of P release from sediments ecologically,economically and effectively. However, the application of one technology can solve a problem,and also brings another problem accordingly. This paper gives a review of recent researches on the sediments in-situ inactivation technology,inactivation mechanism,advantages and disadvantages of different inactivation agents,such as aluminum,iron,calcium and natural clay minerals. Meanwhile,the priority research areas of sediments in-situ inactivation technology are pointed out: The first is to explore novel agents for in-situ inactivation technology; the second is to search new technology system suitable to local conditions for different types of lakes,the third is to strengthen researches of combining applications of sediments inactivation and other technologies; and the last is to strengthen the negative effects assessment of different inactivation technologies,and to find reasonable plans to solve these problems. |
来源
|
地球科学进展
,2013,28(6):674-684 【核心库】
|
关键词
|
富营养化
;
沉积物修复
;
磷
;
原位钝化技术
|
地址
|
中国科学院地球化学研究所, 环境地球化学国家重点实验室, 贵州, 贵阳, 550002
|
语种
|
中文 |
文献类型
|
综述型 |
ISSN
|
1001-8166 |
学科
|
地球物理学 |
基金
|
国家科技支撑计划项目
|
文献收藏号
|
CSCD:4873241
|
参考文献 共
67
共4页
|
1.
范成新.
太湖-沉积物污染与修复原理,2009
|
CSCD被引
1
次
|
|
|
|
2.
Rydin E. Potentially mobile phosphorus in Lake Erken sediment.
Water Research,2000,34:2037-2042
|
CSCD被引
279
次
|
|
|
|
3.
Sondergaard M. Role of sediment and internal loading of phosphorus in shallow lakes.
Hydrobiologia,2003(506/509):135-145
|
CSCD被引
143
次
|
|
|
|
4.
Qin B Q. Estimation of internal nutrient release in large shallow Lake Taihu, China.
Science in China (Series D),2006,49(Suppl):38-50
|
CSCD被引
20
次
|
|
|
|
5.
Ozkundakci D. Hypolimnetic phosphorus and nitrogen dynamics in a small, eutrophic lake with a seasonally anoxic hypolimnion.
Hydrobiologia,2011,661(1):5-20
|
CSCD被引
16
次
|
|
|
|
6.
Carvalho L.
Risk Assessment Methodology for Determining Nutrient Impacts in Surface Freshwater Bodies,2005
|
CSCD被引
2
次
|
|
|
|
7.
Van Arkel G J.
Long-term Sediment Modeling in Hamilton Harbors,1994
|
CSCD被引
1
次
|
|
|
|
8.
Agyei N M. The removal of phosphate ions from aqueous solution by fly ash slag, ordinary Portland cement and related blends.
Cement and Concrete Research,2002,32:1889-1897
|
CSCD被引
23
次
|
|
|
|
9.
Egemose S. Resuspension behavior of aluminum treated lake sediments: Effects of ageing and pH.
Hydrobiologia,2009,636(1):203-217
|
CSCD被引
6
次
|
|
|
|
10.
Vopel K. Modification of sediment-water solute exchange by sediment-capping materials: Effects on O2 and pH.
Marine and Freshwater Research,2008,59(12):1101-1110
|
CSCD被引
13
次
|
|
|
|
11.
Rydin E. Aluminum dose required to inactivate phosphate in lake sediments.
Water Research,1998,32(10):2969-2976
|
CSCD被引
38
次
|
|
|
|
12.
Malecki-Brown L M. Effect of aluminum-containing amendments on phosphorus sequestration of wastewater treatment wetland soil.
Soil Science Society of America Journal,2009,73(3):852-861
|
CSCD被引
3
次
|
|
|
|
13.
Malecki-Brown L M. Alum application to improve water quality in a municipal wastewater treatment wetland.
Journal of Environmental Quality,2009,38(2):814-821
|
CSCD被引
1
次
|
|
|
|
14.
王敬富. 贵州红枫湖沉积物磷赋存形态的空间变化特征.
湖泊科学,2012,24(5):798-796
|
CSCD被引
1
次
|
|
|
|
15.
Yue Q Y. Research on the characteristics of Red Mud Granular Adsorbents (RMGA) for phosphate removal.
Journal of Hazardous Materials,2010,176:741-748
|
CSCD被引
4
次
|
|
|
|
16.
Cooke G.
Restoration and Management of Lakes and Reservoirs (Second Edition),1993
|
CSCD被引
1
次
|
|
|
|
17.
胡晓帧. 不同改良条件下硫酸铝对滇池污染底泥磷的钝化效果.
环境科学学报,2008,28(1):44-49
|
CSCD被引
4
次
|
|
|
|
18.
Haggard B E. Phosphorus flux from bottom sediments in lake Eucha, Oklahoma.
Journal of Environmental Quality,2005,34(2):724-728
|
CSCD被引
6
次
|
|
|
|
19.
Cooke G D. Effectiveness of Al, Ca, and Fe salts for control of internal phosphorus loading in shallow and deep lakes.
Hydrobiologia,1993,253(1/3):323-335
|
CSCD被引
10
次
|
|
|
|
20.
何宏平. 蒙脱石、高岭石、伊利石对重金属离子吸附容量的实验研究.
岩石矿物学杂志,2001,20(4):573-578
|
CSCD被引
55
次
|
|
|
|
|