铁锰铝氧化物对锑的吸附研究进展
Progress on the adsorption of antimony by iron,manganese,and aluminum oxides
查看参考文献61篇
文摘
|
锑(Sb)是一种对人体有毒的重金属元素。近年来由于矿业开采、冶炼与广泛的使用,其污染已经成为了全球性的环境问题。锑的毒性和迁移强烈依赖于它的化学形态和环境氧化还原条件。锑极易被沉积物、土壤中的铁、锰、铝(氢)氧化物和黏土矿物吸附。本文基于前人和作者的已有工作,对铁锰铝(氢)氧化物和黏土矿物吸附锑的热力学、动力学及吸附机制进行了详细综述,对温度、pH、离子强度、共存离子等因素对锑吸附的影响进行了讨论,指出铁(氢)氧化物吸附Sb(III)过程存在的氧化是由氧气导致,而锰(氢)氧化物吸附过程的Sb(III)氧化是由吸附剂中的Mn(IV)离子引起;铝氧化物、黏土矿物对Sb(III)和Sb(V)的吸附较弱;(氢)氧化物对Sb(III)和Sb(V)的吸附分为内层或外层吸附,但结合方式有差异。本文可为铁锰铝复合吸附剂以及吸附过程中Sb同位素的研究提供一定的理论基础。 |
其他语种文摘
|
Antimony (Sb) is a heavy metalloid that is toxic to humans.Its pollution has recently become a global environmental problem due to mining,smelting,and widespread utilization.The toxicity and transport of Sb strongly depend on its chemical speciation and redox conditions.Sb is highly susceptible to being adsorbed by (hydro)oxides of iron (Fe),manganese (Mn),aluminum (Al),and clay minerals in soils and sediments.Based on our comprehensive review of previous studies,this paper presents detailed advances in the thermodynamics,kinetics,and corresponding mechanisms of Sb adsorption by (hydro) oxides of Fe,Mn,Al,and clay minerals,and discusses the effects of temperature,pH,ionic strength and coexisting ions on Sb adsorption.We believe that the oxidation during the adsorption of Sb (III) by (hydro)oxides of Fe is caused by free oxygen,while the oxidation during the adsorption of Sb (III) by(hydro)oxides of Mn is caused by Mn(IV) ions;the adsorption Sb(III) and Sb(V) by Al oxides and clay minerals is weak;and the adsorption mechanism of Sb (III) and Sb (V) by (hydro) oxides is mainly inner or outer layer complexation.This paper provides a certain theoretical basis for the development of Fe-Mn-Al composite adsorbents and the study of Sb isotope behaviors in the adsorption process. |
来源
|
矿物岩石地球化学通报
,2023,42(4):931-940 【核心库】
|
DOI
|
10.19658/j.issn.1007-2802.2023.42.041
|
关键词
|
锑
;
吸附
;
铁氧化物
;
锰氧化物
;
铝氧化物
;
黏土矿物
|
地址
|
1.
中国地质大学(北京), 地质过程与矿产资源国家重点实验室, 北京, 100083
2.
中国科学院地球化学研究所, 环境地球化学国家重点实验室, 贵阳, 550081
|
语种
|
中文 |
文献类型
|
综述型 |
ISSN
|
1007-2802 |
学科
|
地质学 |
基金
|
国家自然科学基金资助项目
|
文献收藏号
|
CSCD:7570931
|
参考文献 共
61
共4页
|
1.
Acharya J. Removal of lead(II) from wastewater by activated carbon developed from Tamarind wood by zinc chloride activation.
Chemical Engineering Journal,2009,149(1/3):249-262
|
CSCD被引
26
次
|
|
|
|
2.
Ahmad S. Adsorption studies of lead on lateritic minerals from aqueous media.
Separation Science and Technology,2002,37(2):343-362
|
CSCD被引
5
次
|
|
|
|
3.
Azizian S. Kinetic models of sorption: A theoretical analysis.
Journal of Colloid and Interface Science,2004,276(1):47-52
|
CSCD被引
64
次
|
|
|
|
4.
Bagherifam S. In situ stabilization of As and Sb with naturally occurring Mn, Al and Fe oxides in a calcareous soil: Bioaccessibility, bioavailability and speciation studies.
Journal of Hazardous Materials,2014,273:247-252
|
CSCD被引
11
次
|
|
|
|
5.
Balek V. Thermal behaviour of iron(III) oxide hydroxides.
Pure & Applied Chemistry,1995,67(11):1839-1842
|
CSCD被引
2
次
|
|
|
|
6.
Belzile N. Oxidation of antimony (III) by amorphous iron and manganese oxyhydroxides.
Chemical Geology,2001,174(4):379-387
|
CSCD被引
25
次
|
|
|
|
7.
Canecka L. Kinetic sorption study of arsenic, antimony and phosphorus onto synthetic iron oxides.
Fresenius Environmental Bulletin,2011,20(12a):3401-3404
|
CSCD被引
2
次
|
|
|
|
8.
Ceriotti G. A study of antimony complexed to soil-derived humic acids and inorganic antimony species along a Massachusetts highway.
Microchemical Journal,2009,91(1):85-93
|
CSCD被引
8
次
|
|
|
|
9.
Denys S. Bioaccessibility, solid phase distribution, and speciation of Sb in soils and in digestive fluids.
Chemosphere,2009,74(5):711-716
|
CSCD被引
12
次
|
|
|
|
10.
El-Ashtoukhy E S Z. Removal of lead (II) and copper (II) from aqueous solution using pomegranate peel as a new adsorbent.
Desalination,2008,223(1/3):162-173
|
CSCD被引
21
次
|
|
|
|
11.
Essington M. Adsorption of antimonate by kaolinite.
Soil Science Society of America Journal,2017,81(3):514-525
|
CSCD被引
2
次
|
|
|
|
12.
Essington M E. Adsorption of antimonate, phosphate, and sulfate by manganese dioxide: Competitive effects and surface complexation modeling.
Soil Science Society of America Journal,2015,79(3):803-814
|
CSCD被引
3
次
|
|
|
|
13.
Filella M. Antimony in the environment: A review focused on natural waters: II. Relevant solution chemistry.
Earth-Science Reviews,2002,59(1/4):265-285
|
CSCD被引
51
次
|
|
|
|
14.
Fu F L. Removal of heavy metal ions from wastewaters: A review.
Journal of Environmental Management,2011,92(3):407-418
|
CSCD被引
419
次
|
|
|
|
15.
Fu L. Oxidation of antimony (III) in soil by manganese (IV) oxide using X-ray absorption fine structure.
Journal of Environmental Sciences,2018,73:31-37
|
CSCD被引
6
次
|
|
|
|
16.
Goh K H. Sorption characteristics and mechanisms of oxyanions and oxyhalides having different molecular properties on Mg/Al layered double hydroxide nanoparticles.
Journal of Hazardous Materials,2010,179(1/3):818-827
|
CSCD被引
8
次
|
|
|
|
17.
Guo X J. Adsorption of antimony onto iron oxyhydroxides: Adsorption behavior and surface structure.
Journal of Hazardous Materials,2014,276:339-345
|
CSCD被引
39
次
|
|
|
|
18.
He M C. Antimony speciation in the environment:Recent advances in understanding the biogeochemical processes and ecological effects.
Journal of Environmental Sciences,2019,75:14-39
|
CSCD被引
47
次
|
|
|
|
19.
Ilgen A G. Sb(III) and Sb(V) sorption onto Al-rich phases: Hydrous Al oxide and the clay minerals kaolinite KGa-1b and oxidized and reduced nontronite NAu-1.
Environmental Science & Technology,2012,46(2):843-851
|
CSCD被引
9
次
|
|
|
|
20.
Jia X C. The antimony sorption and transport mechanisms in removal experiment by Mn-coated biochar.
Science of the Total Environment,2020,724:138158
|
CSCD被引
6
次
|
|
|
|
|