空间摩擦学及其材料的研究进展
Research Status and Developing Trend of Space Tribology and Tribological Materials
查看参考文献56篇
文摘
|
综述了空间苛刻服役环境及其对空间摩擦学材料性能影响的研究,深入分析了空间环境对空间摩擦材料、空间耐磨材料和空间减摩材料摩擦磨损机理的影响。空间摩擦材料主要应用于空间对接机构及空间机械臂中,应具有稳定的摩擦力矩与优良的抗黏着磨损性能。空间耐磨材料主要应用于空间轴承、齿轮和密封件等部件中,如Fe-Al金属间化合物在高温下抗蠕变性急剧下降,常通过添加金属元素(Ce,Cr,Mn,Mo,Nb,W等)及固体润滑剂提高材料抗蠕变性能; Ti及其合金常通过表面改性改善黏着性;与基体结合性良好的耐磨涂层可以较大程度的改善材料的耐磨性。空间减摩材料主要指润滑剂与自润滑材料,如软金属Pb、高分子材料PI和PTFE等,以及某些金属的氧化物,氟化物和硫化物等,能较好地降低材料表面的摩擦因数。随着航天科技的发展,亟须开发新型高性能空间摩擦学材料,建立摩擦学材料数据库,以应对国际航天技术发展的挑战。 |
其他语种文摘
|
The harsh space environment and its influence on the performance of space tribological materials are reviewed. The effects of the harsh space environment on the friction and wear mechanisms of friction materials,anti-wear materials and anti-friction materials are analyzed respectively. Space friction materials which are often used in space docking system and space manipulator should have stable friction torque and excellent adhesive wear resistance. Space anti-wear materials are mainly used in the space bearings,gears and seal parts. For example,The metal elements (e. g. Ce,Cr,Mn,Mo,Nb,W) and solid lubricants are often added for Fe-Al intermetallics to restrain creep at high temperature; the wear resistances of Ti and its alloys are often improved by surface modification; anti-wear coating which has a proper associativity with the matrix can improve the wear resistance of the materials. Space anti-friction materials mainly refer to lubricants and self-lubricating materials which can reduce friction coefficient of the materials,such as soft metals,polymer materials,some oxides,fluorides and sulfides. With the development of aerospace science and technology,it is highly demanded that the novel tribological materials with high performance should be developed for space applications,and the database of tribological materials should be built,in order to meet the international challenge of development of space technology. |
来源
|
航空材料学报
,2017,37(2):88-99 【核心库】
|
DOI
|
10.11868/j.issn.1005-5053.2015.000195
|
关键词
|
摩擦学材料
;
空间环境
;
摩擦
;
耐磨
;
减摩
|
地址
|
中南大学, 粉末冶金国家重点实验室, 长沙, 410083
|
语种
|
中文 |
文献类型
|
综述型 |
ISSN
|
1005-5053 |
学科
|
冶金工业 |
基金
|
国家自然科学基金
;
中南大学粉末冶金国家重点实验室开放基金
|
文献收藏号
|
CSCD:5961303
|
参考文献 共
56
共3页
|
1.
Miyoshi K.
Adhesion,friction,and wear behavior of clean metal-ceramic couples,1995
|
CSCD被引
1
次
|
|
|
|
2.
Pippin G.
Summary status of MISSE-1 and MISSE-2 experiments and details of estimated environmental exposures for MISSE-1 and MISSE-2. AFRL-ML-WP-TR-2006-4237,Technical Operations Support (TOPS) II (Delivery Order 0011). Wright-Patterson Air Force Base,2006
|
CSCD被引
1
次
|
|
|
|
3.
Fujimoto K. Degradation of carbon-based materials due to impact of high-energy atomic oxygen.
International Journal of Impact Engineering,2003,28(1):1-11
|
CSCD被引
5
次
|
|
|
|
4.
Bowles D E. Electron radiation effects on the thermal expansion of graphite resin composites.
Journal of Spacecraft and Rockets,1986,23(6):625-629
|
CSCD被引
7
次
|
|
|
|
5.
Richter L. Low temperature mobility and mechanisms.
Georgia Institute of Technology,2008(6):21-22
|
CSCD被引
1
次
|
|
|
|
6.
Aaimja N J. The strain energy release rate of composite microcracking: a variational approach.
Journal of Composite Materials,1989,23(11):1106-1129
|
CSCD被引
7
次
|
|
|
|
7.
Fukunaga H. Probabilistic failure strength analyses of graphite /epoxy crossply laminates.
Journal of Composite Materials,1984,18(4):339-356
|
CSCD被引
6
次
|
|
|
|
8.
Di Pippo S. Future potential applications of robotics for the International Space Station.
Robotics and Autonomous Systems,1998,23(1/2):37-43
|
CSCD被引
4
次
|
|
|
|
9.
Grossman E. Space environment effects on polymers in low earth orbit.
Nuclear Instruments & Methods in Physics Research,2003,208(9):48-57
|
CSCD被引
36
次
|
|
|
|
10.
Baker F C. European Robotic Arm (ERA) manipulator joint system motor unit and tribological brake.
European Space Agency-Publications-ESA SP,1999,438:111-120
|
CSCD被引
2
次
|
|
|
|
11.
Rusconi A. DEXARM-a dextrous robot arm for space applications.
Proceedings of the 8th ESA Workshop on Advanced Space Technologies for Robotics and Automation,2004
|
CSCD被引
4
次
|
|
|
|
12.
姚萍屏. MoS_2在空间对接摩擦材料烧结过程中的行为变化.
中国有色金属学报,2007,17(4):612-616
|
CSCD被引
5
次
|
|
|
|
13.
姚萍屏. 空间用铜基粉末冶金摩擦材料及其摩擦性能研究.
全国青年摩擦学学术会议,2009
|
CSCD被引
1
次
|
|
|
|
14.
Yao P P. Tribological and mechanical properties of materials for friction pairs used to space docking.
Advanced Materials Research,2012,538:1929-1934
|
CSCD被引
2
次
|
|
|
|
15.
Yao P P. Study on space copper-based powder metallurgy friction material and its tribological properties.
Advanced Materials Research,2011,284:479-487
|
CSCD被引
8
次
|
|
|
|
16.
肖叶龙. 石墨与MoS_2配比对空间对接用摩擦材料性能的影响.
中国有色金属学报,2012,22(9):2539-2545
|
CSCD被引
7
次
|
|
|
|
17.
Spalvins T. Lubrication with sputtered MoS_2 films: Principles,operation,and limitations.
Journal of Materials Engineering and Performance,1992,1(3):347-351
|
CSCD被引
7
次
|
|
|
|
18.
Cho M H. Tribological properties of solid lubricants (graphite,Sb_2 S_3,MoS_2) for automotive brake friction materials.
Wear,2006,260(7/8):855-860
|
CSCD被引
24
次
|
|
|
|
19.
邓军旺. 压力对空间对接摩擦材料摩擦磨损性能的影响.
非金属矿,2006,29(5):59-62
|
CSCD被引
2
次
|
|
|
|
20.
周宇清. 模拟空间状态下的粉末冶金摩擦材料性能.
粉末冶金材料科学与工程,2005,10(1):50-54
|
CSCD被引
5
次
|
|
|
|
|