Parvalbumin阳性中间神经元缺陷在精神分裂症病理机制中的作用
Roles of impaired parvalbumin positive interneurons in schizophrenic pathology
查看参考文献118篇
文摘
|
精神分裂症是一种多发于青壮年的重性精神病,其原因尚不明确。经典的多巴胺缺陷理论假说在某些方面欠缺解释力;与此同时,关于Parvalbumin阳性的中间神经元(后简称PV+神经元)缺陷在精神分裂症病理机制中的作用逐渐明晰,并引起了越来越多的关注。PV+神经元在绝大部分脑区中是一种快速放电的抑制性神经元,参与了突触可塑性的调节,兴奋/抑制平衡的维持和神经发生等。而在精神分裂症中, PV+神经元的异常在患者和动物研究中都被普遍证实,并发现与NMDA受体缺陷、gamma波异常和氧化应激存在某些关联。 |
其他语种文摘
|
Schizophrenia is a severe mental disorder typically began in late adolescence or early adulthood. To date, the cause of schizophrenia remains largely unclear. The classical dopamine hypothesis of schizophrenia is now thought to be sided. Meanwhile, the involvement of impaired Parvalbumin positive interneurons (PV+ neurons) in the pathological mechanism of schizophrenia has been realized and received increasing attention. Generally, PV+ cells is a kind of inhibitory, fast-spiking interneurons, which had been demonstrated to be involved in synaptic plasticity, excitation/inhibition balance and neurogenesis. In schizophrenia, abnormal PV+ neurons has been commonly found in patients and relevant animal models., In this article, we reviewed the roles of deficits of PV+ neurons in schizophrenic pathology combined its principal phenotypes including defective NMDA receptors, abnormal gamma oscillation and oxidative stress, hoping to contribute to further investigation and development of new drugs. |
来源
|
心理科学进展
,2018,26(11):1992-2002 【核心库】
|
DOI
|
10.3724/SP.J.1042.2018.01992
|
关键词
|
精神分裂症
;
中间神经元
;
NMDA受体
;
氧化应激
|
地址
|
1.
中国科学院心理研究所, 中国科学院心理健康院重点实验室, 北京, 100101
2.
中国科学院大学, 北京, 100049
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1671-3710 |
学科
|
社会科学总论 |
基金
|
国家自然科学基金
|
文献收藏号
|
CSCD:6369055
|
参考文献 共
118
共6页
|
1.
Abekawa T. Prenatal exposure to an NMDA receptor antagonist, MK-801 reduces density of parvalbumin-immunoreactive GABAergic neurons in the medial prefrontal cortex and enhances phencyclidine-induced hyperlocomotion but not behavioral sensitization to methamphetamine in postpubertal rats.
Psychopharmacology,2007,192(3):303-316
|
CSCD被引
2
次
|
|
|
|
2.
Abi-Dargham A. The role of serotonin in the pathophysiology and treatment of schizophrenia.
The Journal of Neuropsychiatry and Clinical Neurosciences,1997,9(1):1-17
|
CSCD被引
2
次
|
|
|
|
3.
Aika Y. Quantitative analysis of GABA-like-immunoreactive and parvalbumin-containing neurons in the CA1 region of the rat hippocampus using a stereological method, the disector.
Experimental Brain Research,1994,99(2):267-276
|
CSCD被引
3
次
|
|
|
|
4.
Alberi L. The calcium-binding protein parvalbumin modulates the firing 1 properties of the reticular thalamic nucleus bursting neurons.
Journal of Neurophysiology,2013,109(11):2827-2841
|
CSCD被引
1
次
|
|
|
|
5.
Ali A B. Synaptic α5 subunit-containing GABAA receptors mediate IPSPs elicited by dendrite-preferring cells in rat neocortex.
Cerebral Cortex,2007,18(6):1260-1271
|
CSCD被引
2
次
|
|
|
|
6.
Barr M S. Evidence for excessive frontal evoked gamma oscillatory activity in schizophrenia during working memory.
Schizophrenia Research,2010,121(1/3):146-152
|
CSCD被引
1
次
|
|
|
|
7.
Bartos M. Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks.
Nature Reviews Neuroscience,2007,8(1):45-56
|
CSCD被引
19
次
|
|
|
|
8.
Beasley C L. Parvalbumin-immunoreactive neurons are reduced in the prefrontal cortex of schizophrenics.
Schizophrenia Research,1997,24(3):349-355
|
CSCD被引
4
次
|
|
|
|
9.
Belforte J E. Postnatal NMDA receptor ablation in corticolimbic interneurons confers schizophrenia-like phenotypes.
Nature Neuroscience,2010,13(1):76-83
|
CSCD被引
7
次
|
|
|
|
10.
Behrens M M. Ketamine-induced loss of phenotype of fast-spiking interneurons is mediated by NADPH-oxidase.
Science,2007,318(5856):1645-1647
|
CSCD被引
6
次
|
|
|
|
11.
Behrens M M. Does schizophrenia arise from oxidative dysregulation of parvalbumin-interneurons in the developing cortex?.
Neuropharmacology,2009,57(3):193-200
|
CSCD被引
1
次
|
|
|
|
12.
Bezaire M J. Quantitative assessment of CA1 local circuits:Knowledge base for interneuron‐pyramidal cell connectivity.
Hippocampus,2013,23(9):751-785
|
CSCD被引
2
次
|
|
|
|
13.
Billingslea E N. Parvalbumin cell ablation of NMDA-R1 causes increased resting network excitability with associated social and self-care deficits.
Neuropsychopharmacology,2014,39(7):1603-1613
|
CSCD被引
3
次
|
|
|
|
14.
Bitanihirwe B K Y. Glutamatergic deficits and parvalbumin-containing inhibitory neurons in the prefrontal cortex in schizophrenia.
BMC Psychiatry,2009,9(71):1
|
CSCD被引
1
次
|
|
|
|
15.
Breier A. Serotonin, schizophrenia and antipsychotic drug action.
Schizophrenia Research,1995,14(3):187-202
|
CSCD被引
3
次
|
|
|
|
16.
Brenhouse H C. Nonsteroidal anti-inflammatory treatment prevents delayed effects of early life stress in rats.
Biological Psychiatry,2011,70(5):434-440
|
CSCD被引
1
次
|
|
|
|
17.
Burguiere E. Optogenetic stimulation of lateral orbitofronto-striatal pathway suppresses compulsive behaviors.
Science,2013,340(6137):1243-1246
|
CSCD被引
5
次
|
|
|
|
18.
Buzsaki G. Commissural projection to the dentate gyrus of the rat:evidence for feed-forward inhibition.
Brain Research,1981,230(1/2):346-350
|
CSCD被引
1
次
|
|
|
|
19.
Cabungcal J H. Juvenile antioxidant treatment prevents adult deficits in a developmental model of schizophrenia.
Neuron,2014,83(5):1073-1084
|
CSCD被引
4
次
|
|
|
|
20.
Cabungcal J H. Early-life insults impair parvalbumin interneurons via oxidative stress:reversal by N-acetylcysteine.
Biological Psychiatry,2013,73(6):574-582
|
CSCD被引
2
次
|
|
|
|
|