送粉式激光熔覆中瞬态温度场与几何形貌的三维数值模拟
Three-Dimensional Numerical Simulation of Transient Temperature Field and Coating Geometry in Powder Feeding Laser Cladding
查看参考文献14篇
文摘
|
针对送粉式激光熔覆的特点,基于生死单元法建立了一种可以同时计算瞬态温度场及熔覆层几何形貌的三维数值模型,模型中考虑了送粉过程中激光能量的衰减和粉末颗粒的温升。基于该模型对送粉式激光熔覆过程中的温度场分布和几何形貌特点进行了分析。结果表明,在熔覆开始较短时间后,工件的瞬态温度分布与熔覆层几何形貌基本保持稳定。进行了不同送粉速率下的送粉式激光熔覆试验,对比了熔覆层横截面几何形貌的试验结果和计算结果,熔覆层表面轮廓线与试验结果基本保持一致,熔覆层的宽度、高度和熔深与试验结果基本吻合,说明了所建立的激光熔覆层几何形貌计算模型的有效性和可靠性。 |
其他语种文摘
|
A three-dimensional numerical model based on the birth-death element method is developed on the basis of characteristics of powder feeding laser cladding. The model, which takes the laser power attenuation by the powder stream and the heating of powder particles in the powder feeding process into account, has the capability of predicting the transient thermal field and coating geometry. Temperature distribution and geometric characteristic of coating during laser cladding process are investigated. The results show that the temperature field and coating geometry keep stable after a short initial stage of the process. Experiments with different powder feeding rates are performed to validate the calculated results. The calculated coating width, height and depth, as well as outline of coating, agree with the experimental ones, so the reliability of the model is proved. |
来源
|
中国激光
,2013,40(12):1203007-1-1203007-8 【核心库】
|
关键词
|
激光技术
;
激光熔覆
;
数值模拟
;
几何形貌
;
瞬态温度场
|
地址
|
中国科学院力学研究所, 中国科学院先进制造工艺力学重点实验室, 北京, 100190
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0258-7025 |
学科
|
金属学与金属工艺;电子技术、通信技术 |
基金
|
国家自然科学基金面上项目
|
文献收藏号
|
CSCD:5018198
|
参考文献 共
14
共1页
|
1.
Vilar R. Laser cladding.
Journal of Laser Applications,1999,11(2):64-79
|
CSCD被引
36
次
|
|
|
|
2.
Toyserkani E.
Laser Cladding,2005:1-40
|
CSCD被引
7
次
|
|
|
|
3.
武扬. 激光熔覆Ta-W合金涂层工艺方法研究.
中国激光,2011,38(8):0803008
|
CSCD被引
2
次
|
|
|
|
4.
Ocelik V. Thick Co-based coating on cast iron by side laser cladding: analysis of processing conditions and coating properties.
Surface & Coatings Technology,2007,201(12):5875-5883
|
CSCD被引
22
次
|
|
|
|
5.
El Cheikh H. Analysis and prediction of single laser tracks geometrical characteristics in coaxial laser cladding process.
Optics and Lasers in Engineering,2012,50(3):413-422
|
CSCD被引
25
次
|
|
|
|
6.
倪立斌. 基于神经网络和粒子群算法的激光熔覆工艺优化.
中国激光,2011,38(2):0203003
|
CSCD被引
19
次
|
|
|
|
7.
Zhang Yongjie. Numerical study of thermal history in laser aided direct metal deposition process.
Science China Physics, Mechanics and Astronomy,2012,55(8):1431-1438
|
CSCD被引
9
次
|
|
|
|
8.
Zhang Yongjie. Numerical and experimental investigation of multilayer SS410 thin wall built by laser direct metal deposition.
Journal of Materials Processing Technology,2012,212(1):106-112
|
CSCD被引
8
次
|
|
|
|
9.
Wang L. Optimization of the LENS process for steady molten pool size.
Materials Science and Engineering,2008,474(1/2):148-156
|
CSCD被引
4
次
|
|
|
|
10.
贾文鹏. 空心叶片激光快速成形过程的温度/应力场数值模拟.
中国激光,2007,34(9):1308-1312
|
CSCD被引
33
次
|
|
|
|
11.
Alimardani M. A 3D dynamic numerical approach for temperture and thermal stress distributions in multilayer laser solid freeform fabrication process.
Optics and Lasers in Engineering,2007,45(12):1115-1130
|
CSCD被引
18
次
|
|
|
|
12.
黄卫东.
激光立体成形,2007:225-235
|
CSCD被引
2
次
|
|
|
|
13.
谭真.
工程合金热物性,1994:152-154
|
CSCD被引
1
次
|
|
|
|
14.
Zhang X C. Modeling of the residual stresses in plasma-spraying functionally graded ZrO_2/NiCoCrAlY coatings using finite elements method.
Materials & Design,2006,27(4):308-315
|
CSCD被引
17
次
|
|
|
|
|