先进热管理材料研究进展
Research Progress of Advanced Thermal Management Materials
查看参考文献76篇
文摘
|
热管理系统广泛应用于国民经济以及国防等各个领域,控制着系统中热的分散、存储与转换。先进的热管理材料构成了热管理系统的物质基础,而热传导率则是所有热管理材料的核心技术指标。本文针对先进热管理材料的应用、种类以及其中热传导的物理机制等关键问题进行了综述。重点介绍了热界面材料、高导热封装材料、蓄热材料以及热电材料等的研究进展及存在的问题。对均质及复合材料中的热传导机制进行归纳,并指出分子动力学、密度泛函理论及大规模并行计算技术将在揭示多尺度的热传输机制方面发挥越来越重要的作用。 |
其他语种文摘
|
Thermal management systems,controlling the dispersion,storage and conversion of heat, were widely used in various fields of national economy and defence applications etc.Advanced thermal management materials form the material basis of the thermal management system,while the thermal conductivity was the critical property of all the thermal management materials.The application,classification, and physical mechanism of heat conduction of advanced thermal management materials were reviewed in this paper.The research progress and existing problems of thermal interface materials, high thermal conductivity packaging materials,thermal storage materials and thermoelectric materials were introduced.It is pointed out that molecular dynamics,density functional theory and large-scale parallel computing technology will play increasingly import roles in revealing the multi-scale heat transfer mechanism in the homogeneous and composite materials. |
来源
|
材料工程
,2018,46(4):1-11 【核心库】
|
DOI
|
10.11868/j.issn.1001-4381.2017.001194
|
关键词
|
热管理
;
热界面材料
;
高导热封装材料
;
蓄热材料
;
热电材料
;
热导率
|
地址
|
1.
哈尔滨工业大学, 先进焊接与连接国家重点实验室, 哈尔滨, 150001
2.
郑州机械研究所, 郑州, 450001
|
语种
|
中文 |
文献类型
|
综述型 |
ISSN
|
1001-4381 |
学科
|
一般工业技术 |
基金
|
国家国际科技合作专项
|
文献收藏号
|
CSCD:6233690
|
参考文献 共
76
共4页
|
1.
Moore A L. Emerging challenges and materials for thermal management of electronics.
Materials Today,2014,17(4):163-174
|
CSCD被引
37
次
|
|
|
|
2.
Chiara F. A review of energy consumption, management,and recovery in automotive systems,with considerations of future trends.
Proceedings of the Institution of Mechanical Engineers,Part D:Journal of Automobile Engineering,2013,227(6):914-936
|
CSCD被引
6
次
|
|
|
|
3.
Liu H. Thermal issues about Li-ion batteries and recent progress in battery thermal management systems:a review.
Energy Conversion and Management,2017,150:304-330
|
CSCD被引
19
次
|
|
|
|
4.
Pop E. Heat generation and transport in nanometer-scale transistors.
Proceedings of the IEEE,2006,94(8):1587-1601
|
CSCD被引
21
次
|
|
|
|
5.
Mahajan R. Cooling a microprocessor chip.
Proceedings of the IEEE,2006,94(8):1476-1486
|
CSCD被引
8
次
|
|
|
|
6.
Hamann H F. Hotspot-limited microprocessors:direct temperature and power distribution measurements.
IEEE Journal of Solid-State Circuits,2007,42(1):56-65
|
CSCD被引
4
次
|
|
|
|
7.
Wagner J R.
SAE international, 2002.coolant flow control strategies for automotive thermal management systems,2002
|
CSCD被引
1
次
|
|
|
|
8.
Mallik S. Investigation of thermal management materials for automotive electronic control units.
Applied Thermal Engineering,2011,31(2):355-362
|
CSCD被引
22
次
|
|
|
|
9.
于莹潇. 现代汽车热管理系统研究进展.
汽车技术,2009(8):1-7
|
CSCD被引
2
次
|
|
|
|
10.
Snyder G J. Complex thermoelectric materials.
Nature Materials,2008,7(2):105-114
|
CSCD被引
351
次
|
|
|
|
11.
Lajunen A. Thermal energy storage for increasing heating performance and efficiency in electric vehicles.
2017IEEE Transportation Electrification Conference and Expo(ITEC),2017:95-100
|
CSCD被引
1
次
|
|
|
|
12.
Leong K Y. Performance investigation of an automotive car radiator operated with nanofluidbased coolants(nanofluid as a coolant in a radiator).
Applied Thermal Engineering,2010,30(17):2685-2692
|
CSCD被引
9
次
|
|
|
|
13.
Kim E. Real-time battery thermal management for electric vehicles.
2014ACM/IEEE International Conference on Cyber-Physical Systems(ICCPS),2014:72-83
|
CSCD被引
1
次
|
|
|
|
14.
Kim E. Modeling and real-time scheduling of large-scale batteries for maximizing performance.
2015 IEEE Real-Time Systems Symposium,2015:33-42
|
CSCD被引
1
次
|
|
|
|
15.
Lopez-Sanz J. Nonlinear model predictive control for thermal management in plug-in hybrid electric vehicles.
IEEE Transactions on Vehicular Technology,2017,66(5):3632-3644
|
CSCD被引
1
次
|
|
|
|
16.
Yang Z. Thermally conductive,dielectric PCM-boron nitride nanosheet composites for efficient electronic system thermal management.
Nanoscale,2016,8(46):19326-19333
|
CSCD被引
8
次
|
|
|
|
17.
Prasher R. Thermal interface materials:historical perspective, status,and future directions.
Proceedings of the IEEE,2006,94(8):1571-1586
|
CSCD被引
37
次
|
|
|
|
18.
Lemmon E W. Viscosity and thermal conductivity equations for nitrogen,oxygen,argon,and air.
International Journal of Thermophysics,2004,25(1):21-69
|
CSCD被引
21
次
|
|
|
|
19.
Sarvar F. Thermal interface materials-a review of the state of the art.
2006 1st Electronic System Integration Technology Conference,2006:1292-1302
|
CSCD被引
1
次
|
|
|
|
20.
Due J. Reliability of thermal interface materials: a review.
Applied Thermal Engineering,2013,50(1):455-463
|
CSCD被引
8
次
|
|
|
|
|