帮助 关于我们

返回检索结果

基于激光诱导击穿光谱检测水稻叶片镉的研究
Investigation of detection of cadmium in rice leaves based on laser-induced breakdown spectroscopy

查看参考文献23篇

徐聪 1,2   范爽 1,2   徐琢频 1,2   程维民 1,2   杨阳 1   刘晶 1   张鹏飞 1   吴跃进 1   王琦 1 *  
文摘 水稻是我国主要的粮食作物之一,重金属含量的检测对其安全性及品质具有重要意义.激光诱导击穿光谱(LIBS)有望克服传统方法检测耗时的缺点,实现水稻等作物植株中重金属含量的快速原位定量检测。利用共线双脉冲激光诱导击穿光谱(DP-LIBS)技术对水稻叶片中的重金属镉(Cd)元素进行了分析。由于不同的特征谱线对结果有不同影响,为获取更准确、稳定的分析结果,采用样品表面多点烧蚀的实验方法,讨论了Cd I: 228.8 nm、Cd II: 214.4 nm和Cd II: 226.5 nm三条共振线对于定标曲线相关系数(R~2)和预测结果的影响。对比研究发现,532 nm激光先于1064 nm激光进行激发,且两束脉冲时间间隔为0.5 µs时能够获取最好的光谱强度;在三条分析谱线中,Cd I: 228.8 nm、Cd II: 214.4 nm和Cd II: 226.5 nm谱线的定标曲线R~2值分别为0.86、0.60和0.93,原子谱线定量结果高于离子谱线;Cd I: 228.8 nm谱线预测相对误差低于10%,检测限是3.03 mg/kg。实验表明通过对LIBS检测条件的优化,可以实现对水稻叶片中的重金属含量的检测。另外实验中所优化的光谱采集和特征谱线选择方法,也有望应用在不同农产品的重金属成分检测上。
其他语种文摘 Rice is one of the main food crops in China, and the detection of heavy metal content is of great significance for its safety and quality. Laser-induced breakdown spectroscopy (LIBS) is expected to overcome the shortcomings of traditional methods for detecting time-consuming and achieve rapid in situ quantitative detection of heavy metals in crop plants such as rice. The collinear double-pulse laser-induced breakdown spectroscopy (DP-LIBS) technique was used to analyze the heavy metal Cd elements in rice leaves. Because different characteristic spectral lines have different effects on the results, in order to obtain more accurate and stable analysis results, the multi-point ablation test method of the sample surface was used to discuss the influence of the three resonance lines of Cd I: 228.8 nm, Cd II: 214.4 nm,and Cd II: 226.5 nm on the coefficient and prediction results of the calibration curve. The comparative study found that the best spectral intensity can be obtained when the 532 nm laser is excited before the 1064 nm laser, and the two pulses have a time interval of 0.5 µs. Among the three analytical lines, the calibration coefficients R~2 of Cd I: 228.8 nm, Cd II: 214.4 nm and Cd II: 226.5 nm spectral lines are 0.86, 0.60,and 0.93 respectively, and it is found that the quantitative results of atomic spectral lines are higher than that of the ionic spectral lines. Further study shows that the relative prediction errors of Cd I: 228.8 nm spectral lines are less than 10%,and the detection limit is 3.03 mg/kg. Experiments show that by optimizing the detection conditions of LIBS, the detection of heavy metal contents in rice leaves can be achieved. In addition, the optimized spectral acquisition and characteristic spectral line selection methods in the experiment are also expected to be applied to the detection of heavy metal components in other different agricultural products.
来源 量子电子学报 ,2020,37(3):363-369 【扩展库】
DOI 10.3969/j.issn.1007-5461.2020.03.016
关键词 光谱学 ; 激光诱导击穿光谱 ; 重金属Cd ; 实验方法对比
地址

1. 中国科学院合肥物质科学研究院技术生物与农业工程研究所, 安徽, 合肥, 230031  

2. 中国科学技术大学, 安徽, 合肥, 230026

语种 中文
文献类型 研究性论文
ISSN 1007-5461
学科 物理学
基金 国家自然科学基金 ;  安徽省重点研究与开发计划
文献收藏号 CSCD:6732684

参考文献 共 23 共2页

1.  Zhao Xu. 食品中镉测定的国家标准方法比较. 分析科学学报,2019,35(6):853-856 CSCD被引 2    
2.  Zhang Hongwei. Determination of beryllium and cadmium in dental restorations by inductively coupled plasma atomic emission spectrometry. 化学分析计量,2019,28(5):72-75 CSCD被引 1    
3.  Miziolek A W. Laser-Induced Breakdown Spectroscopy,2006:1-20 CSCD被引 1    
4.  Guo Lianbo. 钢铁中钒、钛元素的激光诱导击穿光谱定量检测. 光谱学与光谱分析,2014,34(1):217-220 CSCD被引 7    
5.  Dong Meirong. 基于K-CV参数优化支持向量机的LIBS燃煤热值定量分析. 光谱学与光谱分析,2019,39(7):2202-2209 CSCD被引 8    
6.  Jia Junwei. 基于激光诱导击穿光谱技术的岩性识别方法研究. 量子电子学报,2018,35(3):264-270 CSCD被引 5    
7.  Duan Hongwei. 基于连续灰分区间定标模型的生物炭金属含量LIBS检测. 农业机械学报,2019,50(10):323-328 CSCD被引 2    
8.  Singh V K. Importance of laser-induced breakdown spectroscopy for hard tissues (bone, teeth) and other calcified tissue materials. Lasers in Medical Science,2015,30(6):1763-1778 CSCD被引 5    
9.  Markiewicz-Keszycka M. Laser-induced breakdown spectroscopy (LIBS) for food analysis: A review. Trends in Food Science & Technology,2017,65:80-93 CSCD被引 21    
10.  Luo Ziyi. 激光诱导击穿光谱法测定青菜中Cd. 分析试验室,2018,37(12):1384-1388 CSCD被引 3    
11.  Chen Liang. 应用LIBS技术检测食盐中的镉. 激光技术,2019,43(1):6-10 CSCD被引 5    
12.  Peng Jiyu. 基于激光诱导击穿光谱技术的水稻铬含量快速检测方法研究. Doctorial Dissertation,2018 CSCD被引 1    
13.  Hu Huiqin. 微波辅助激光诱导击穿光谱增强大米中Cd发射强度的研究. 光谱学与光谱分析,2016,36(4):1180-1185 CSCD被引 5    
14.  Jiang T J. Electrochemical laser induced breakdown spectroscopy for enhanced detection of Cd(II) without interference in rice on layer-by-layer assembly of graphene oxides. Electrochimica Acta,2016,216(20):188-195 CSCD被引 3    
15.  Zhang Xi. 不同收光角度下煤粉颗粒流的LIBS光谱特性研究. 光谱学与光谱分析,2013,33(6):1473-1476 CSCD被引 8    
16.  Lamoureux M. Angular distribution and polarization of the continuum emission in anisotropic plasmas. Physical Review A,1989,39(12):6323-6334 CSCD被引 3    
17.  . Atomic spectral line database from CD-ROM 23 of R. L. Kurucz,2017 CSCD被引 1    
18.  Wang Qi. 预烧蚀双脉冲激光诱导Fe等离子体发射光谱的实验研究. 中国激光,2011,38(12):1215001 CSCD被引 8    
19.  Wang Qi. 再加热双脉冲与单脉冲激光诱导Fe等离子体发射光谱实验对比研究. 光学学报,2011,31(10):1030002 CSCD被引 14    
20.  Shen J. Analysis of Enhanced Laser-Induced Breakdown Spectroscopy with Double Femtosecond Laser Pulses. Plasma Science and Technology,2015,17(2):147-152 CSCD被引 7    
引证文献 5

1 徐水秀 基于激光诱导击穿光谱的煤质快速分析研究及应用 量子电子学报,2021,38(6):727-750
CSCD被引 9

2 葛一凡 基于激光诱导击穿光谱和神经网络的蛋壳研究 激光技术,2022,46(4):532-537
CSCD被引 2

显示所有5篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号