微结构表面微重力下沸腾换热及临界机理研究
Investigation of Boiling Heat Transfer Performance and Mechanism of Critical Heat Flux for Micro-structured Surface Under Microgravity
查看参考文献11篇
文摘
|
本文研究了微重力下新型复合微结构表面在FC-72溶液中的池沸腾换热性能,测试了三种不同热流密度下该表面的温度变化趋势及气泡动力学行为,重点分析了高热流密度下沸腾临界现象。实验结果表明:复合微结构表面在中低热流密度下壁面温度和沸腾换热系数与常重力工况基本保持一致无明显恶化;在高热流密度下进入微重力后壁面温度仍能维持短时间稳定,直到整个换热面被气泡覆盖后壁面温度才开始上升直至临界发生。复合微结构表面独特的微结构阵列及沟槽结构增加了换热表面的毛细芯吸力,可有效提升沸腾过程中工质的补液速率从而提高临界热流密度。 |
其他语种文摘
|
The pool boiling heat transfer performance of bistructured surface based on micro-pinfinned structure was experimentally studied in FC-72 under microgravity. The changing trend of wall temperature and bubble dynamic of three different heat fluxes were detected, and the boiling phenomenon at boiling crisis was also analyzed. The experimental results show that at mid-low heat fluxes the wall temperatures and heat transfer coefficients are the same as under normal gravity. At high heat flux the wall temperature can maintain stable while entering microgravity until the heating surface is totally covered by a huge bubble. The bistrcutured surface has a strong capillary wick effect owing to its special microstructures and grooves, which can efficiently improve the velocity of liquid supply and enhance the CHF(Critical Heat Flux). |
来源
|
工程热物理学报
,2023,44(6):1587-1593 【核心库】
|
关键词
|
微重力
;
池沸腾
;
临界热流密度
|
地址
|
1.
西北大学化工学院, 西安, 710069
2.
西安交通大学化工学院化工过程机械系, 西安, 710049
3.
西安交通大学, 动力工程多相流国家重点实验室, 西安, 710049
4.
中国科学院力学研究所, 中国科学院微重力重点实验室, 北京, 100190
5.
中国科学院大学工程科学学院, 北京, 100049
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0253-231X |
学科
|
能源与动力工程 |
基金
|
陕西省自然科学基金青年项目
;
陕西省教育厅青年项目
;
中欧载人航天合作空间应用合作项目
|
文献收藏号
|
CSCD:7477880
|
参考文献 共
11
共1页
|
1.
Siegel R. A Photographic Study of Boiling in the Absence of Gravity.
Journal of Heat Transfer,1959,81(3):245-250
|
CSCD被引
3
次
|
|
|
|
2.
赵建福. 过冷池沸腾落塔短时微重力实验研究.
工程热物理学报,2007,28(1):98-100
|
CSCD被引
3
次
|
|
|
|
3.
Kim J. Subcooled Pool Boiling in Variable Gravity Environments.
Journal of Heat Transfer,2009,131(9):258-262
|
CSCD被引
7
次
|
|
|
|
4.
Colin C. Nucleate Pool Boiling in Microgravity: Recent Progress and Future Prospects.
Comptes Rendus Mecanique,2017,345(1):21-34
|
CSCD被引
2
次
|
|
|
|
5.
Yang Yanjie. Experimental Study on Pool Boiling of Distilled Water and HFE7500 Fluid Under Microgravity.
Acta Astronautica,2018,143:362-371
|
CSCD被引
2
次
|
|
|
|
6.
Warrier G R. Nucleate Pool Boiling eXperiment (NPBX) in microgravity: International Space Station.
International Journal of Heat & Mass Transfer,2015,83:781-798
|
CSCD被引
4
次
|
|
|
|
7.
Forrest E. Augmentation of Nucleate Boiling Heat Transfer and Critical Heat Flux Using Nanoparticle Thin-film Coatings.
International Journal of Heat & Mass Transfer,2010,53(1/3):58-67
|
CSCD被引
11
次
|
|
|
|
8.
刘鹏. 微重力池沸腾中的气泡行为实验研究.
空间科学学报,2018,38(2):221-226
|
CSCD被引
5
次
|
|
|
|
9.
Shi J. Experimental Investigation on Pool Boiling Heat Transfer on Untreated/super-hydrophilic Metal Foam Under Microgravity.
International Journal of Heat and Mass Transfer,2020,151:119289
|
CSCD被引
3
次
|
|
|
|
10.
Kong Xin. Experimental Study of Pool Boiling Heat Transfer on Novel Bistructured Surfaces Based on Micro-pin-finned structur.
Experimental Thermal and Fluid Science,2018,91:9-19
|
CSCD被引
8
次
|
|
|
|
11.
Zhang Yonghai. Nucleate Pool Boiling Heat Transfer on a Micro-Pin-Finned Surface in Short-Term Microgravity.
Heat Transfer Engineering,2016,38(5/8):594-610
|
CSCD被引
1
次
|
|
|
|
|