百纳米以下压入硬度规律的科学意义和挑战
The significance and challenges on determining the size-effect of indentation hardness at nano-scale
查看参考文献35篇
文摘
|
仪器化压入是广泛应用的微/纳米力学测试方法,可靠的百纳米以下压入硬度尺寸效应的规律及其机理是其中尚未完全认识清楚的问题.本文总结了课题组近期在百纳米以下压入硬度的实验和模拟方面的进展:通过精确控制试样晶向状态和表面粗糙度,表征压头尖端曲率,在大规模分子模拟中引入压头曲率参数,实现了实验和模拟的衔接和相互校核,获得了可靠的百纳米以下的压入硬度规律,并揭示了两种相反的尺寸效应的机理,即常规的随压入深度减小而增大的硬度尺寸效应来源于压头下方材料中位错的形核和传播,而与压入初始阶段的相反尺寸效应来源于压头尖端曲率和材料弹性行为之间的耦合效应;针对压入过程中的位错演化,系统对比了分子动力学和分子静力学的结果可靠性和计算效率与弛豫时间和能量收敛精度参数的关系,提出了选取模拟方法和模拟参数的依据. |
其他语种文摘
|
Instrumented indentation is a method that has been widely used to obtain material properties at micro and nano scale, yet creditable indentation size effect at real nano-scale and its mechanism are still unsolved. This paper summarizes our recent work on progresses in experimental and simulation approaches to this problem. By confirming the crystalline orientations and the surface roughness of the sample, obtaining the tip radius of the indenters, as well as considering tip radius in large-scale molecular simulation, the gap between the experiment and simulation results is bridged, and these two results can be cross verified with each other, which leads to a reliable hardness trend over the indentation depth at nano-scale. Two opposite size effects are observed, and their different mechanisms are revealed, as the conventional size effect results from the plastic behavior such as dislocation nucleation and propagation in the sample beneath the indenter, while the initial reverse size effect is due to the combined effect of the indenter roundness and elastic behavior of the material. Systematic investigation on the efficiency and fidelity of MD and MS is carried out, on problem of the dislocation evolution during indentation, the influence of the relaxation time and convergence resolution on the load curve and dislocation patterns are studied, and suggestion on choice of two simulation methods and the relaxation time and convergence resolution are given. |
来源
|
中国科学. 物理学
, 力学, 天文学,2018,48(9):094603-1-094603-9 【核心库】
|
DOI
|
10.1360/SSPMA2018-00206
|
关键词
|
纳米压入
;
压入硬度
;
尺寸效应
;
位错
;
计算效率
|
地址
|
1.
中国科学院力学研究所, 非线性力学国家重点实验室, 北京, 100190
2.
中国科学院大学工程科学学院, 北京, 100049
3.
浙江工业大学机械工程学院, 杭州, 310014
4.
北京强度环境研究所, 北京, 100076
5.
北京航空航天大学物理与核能工程学院, 北京, 100191
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1674-7275 |
学科
|
一般工业技术 |
基金
|
国家自然科学基金
;
国家重大科学研究计划
;
中国科学院战略性先导科技专项
|
文献收藏号
|
CSCD:6336665
|
参考文献 共
35
共2页
|
1.
Oliver W C. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments.
J Mater Res,1992,7:1564-1583
|
CSCD被引
938
次
|
|
|
|
2.
张泰华. 纳米硬度技术的发展和应用.
力学进展,2002,32:349-364
|
CSCD被引
81
次
|
|
|
|
3.
张泰华.
微/纳米力学测试技术及其应用,2004
|
CSCD被引
17
次
|
|
|
|
4.
Jiang P. Determination of plastic properties by instrumented spherical indentation: Expanding cavity model and similarity solution approach.
J Mater Res,2009,24:1045-1053
|
CSCD被引
4
次
|
|
|
|
5.
Yang R. Experimental verification and theoretical analysis of the relationships between hardness, elastic modulus, and the work of indentation.
Appl Phys Lett,2008,92:231906
|
CSCD被引
8
次
|
|
|
|
6.
Yu C. Relationships between the work recovery ratio of indentation and plastic parameters for instrumented spherical indentation.
MRC,2015,5:89-94
|
CSCD被引
6
次
|
|
|
|
7.
Zhang T. A method to determine fracture toughness using cube-corner indentation.
Scripta Mater,2010,62:199-201
|
CSCD被引
12
次
|
|
|
|
8.
Peng G. Determination of shear creep compliance of linear viscoelastic solids by instrumented indentation when the contact area has a single maximum.
J Mater Res,2012,27:1565-1572
|
CSCD被引
3
次
|
|
|
|
9.
Lu Z. Estimation of surface equi-biaxial residual stress by using instrumented sharp indentation.
Mater Sci Eng-A,2014,614:264-272
|
CSCD被引
8
次
|
|
|
|
10.
张泰华.
微/纳米力学测试技术:仪器化压入的测量、分析、应用及其标准化,2013:106
|
CSCD被引
1
次
|
|
|
|
11.
Nix W D. Indentation size effects in crystalline materials: A law for strain gradient plasticity.
J Mech Phys Solids,1998,46:411-425
|
CSCD被引
227
次
|
|
|
|
12.
Aifantis E C. Gradient Plasticity.
Handbook of Materials Behavior Models,2001:281
|
CSCD被引
1
次
|
|
|
|
13.
Swadener J G. The correlation of the indentation size effect measured with indenters of various shapes.
J Mech Phys Solids,2002,50:681-694
|
CSCD被引
29
次
|
|
|
|
14.
Feng G. Indentation size effect in MgO.
Scripta Mater,2004,51:599-603
|
CSCD被引
9
次
|
|
|
|
15.
Elmustafa A A. Nanoindentation and the indentation size effect: Kinetics of deformation and strain gradient plasticity.
J Mech Phys Solids,2003,51:357-381
|
CSCD被引
9
次
|
|
|
|
16.
Gerk A P. The effect of work-hardening upon the hardness of solids: Minimum hardness.
J Mater Sci,1977,12:735-738
|
CSCD被引
4
次
|
|
|
|
17.
Poole W J. Micro-hardness of annealed and work-hardened copper polycrystals.
Scripta Mater,1996,34:559-564
|
CSCD被引
16
次
|
|
|
|
18.
Yang B. Dependence of nanohardness upon indentation size and grain size-A local examination of the interaction between dislocations and grain boundaries.
Acta Mater,2007,55:849-856
|
CSCD被引
11
次
|
|
|
|
19.
Chuah H G. Quantifying the surface roughness effect in microindentation using a proportional specimen resistance model.
J Mater Sci,2013,48:6293-6306
|
CSCD被引
1
次
|
|
|
|
20.
Xia Y. Effect of surface roughness in the determination of the mechanical properties of material using nanoindentation test.
Scanning,2014,36:134-149
|
CSCD被引
4
次
|
|
|
|
|