芽孢杆菌SeRB-2还原亚硒酸盐的动力学研究
Study on Kinetics of Selenite Reduction by Bacillus sp.SeRB-2
查看参考文献25篇
文摘
|
微生物还原亚硒酸盐的动力学研究具有重要的现实意义,可以为Se(IV)污染场地的微生物修复设计提供理论依据。本文研究了兼性厌氧菌Bacillus sp.SeRB-2对亚硒酸钠的还原动力学。通过指数方程模型、对数方程模型和米氏方程模型的分析可知,Se(IV)的细菌还原符合一级反应动力学,还原反应主要集中在对数期和稳定生长前期,米氏方程模型能更好的反映细菌对亚硒酸盐的还原过程。通过对不同Se(IV)浓度下的米氏常数(K_m)和最大反应速率(V_(max))的分析发现,当Se(IV)浓度较低时,K_m值较小,V_(max)值较大,这表明Se(IV)浓度越低,还原亚硒酸盐的酶与Se(IV)的结合能力越强,此时细菌对亚硒酸盐的还原速率越大、还原效率也越高。在本研究中,当Se(IV)浓度为1mmol/L时,其还原效率最高可达90%,能够有效去除或降低Se(IV)污染,说明该菌在Se(IV)污染场地的生物修复上具有应用潜力。 |
其他语种文摘
|
It is significant to study the bioreduction kinetics of selenite,which may provide a theoretical basis for bioremediation design in the contaminated sites.The kinetics of Se(IV)reduction by facultative anaerobic strain Bacillus sp.SeRB-2was studied using the index equation model,logarithm equation model and Michaelis-Menten equation model.It is shown that Se(IV)bioreduction fits a first-order reaction,and reacts mainly in the logarithmic phase and early stationary phase.The Michaelis-Menten equation model better reflects the reduction process compared with both index and logarithm equation models.The kinetic parameters K_m and V_(max) acquired were relevant to Se(IV)concentrations,i.e.,the lower the Se(IV)concentrations, the smaller the K_m value and the hither V_(max) will be.It is indicated that the binding ability between Se-(IV)-reducing enzyme and selenite is stronger,the reducing rate is larger and the reducing efficiency is higher,in a lower Se(IV)medium.In addition, the reduction efficiency is up to 90%,when Se(IV)concentrations are about 1mmol/L,which illustrates that Se(IV) contamination can be effectively reduced or removed by strain SeRB-2.This strain may be suitable for bioremediation in the Se(IV)contaminated sites. |
来源
|
地球与环境
,2014,42(1):47-54 【核心库】
|
关键词
|
细菌
;
还原
;
亚硒酸盐
;
动力学
;
参数
|
地址
|
中国科学院地球化学研究所, 贵阳, 550002
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1672-9250 |
学科
|
化学 |
基金
|
国家自然科学基金创新研究群体项目
;
中国科学院知识创新工程重要方向项目
;
国家自然科学基金项目
|
文献收藏号
|
CSCD:5040945
|
参考文献 共
25
共2页
|
1.
Lenz M. The essential toxin:The changing perception of selenium in environmental sciences.
Science of the Total Environment,2009,407(12):3620-3633
|
CSCD被引
23
次
|
|
|
|
2.
Seiler R L.
Areas susceptible to irrigation-induced selenium contamination of water and biota in the western United States,1999
|
CSCD被引
1
次
|
|
|
|
3.
Garbisu C. Bacterial reduction of selenite to elemental selenium.
Chemical Geology,1996,132(1/4):199-204
|
CSCD被引
11
次
|
|
|
|
4.
Uden P C. Selective detection and identification of Se containing compounds-review and recent developments.
Journal of Chromatography A,2004,1050(1):85-93
|
CSCD被引
8
次
|
|
|
|
5.
Antonioli P. Stenotrophomonas maltophilia SeITE02,a new bacterial strain suitable for bioremediation of selenite-contaminated environmental matrices.
Applied and Environmental Microbiology,2007,73(21):6854-6863
|
CSCD被引
7
次
|
|
|
|
6.
Stolz J. Microbial transformation of elements:the case of arsenic and selenium.
International Microbiology,2002,5(4):201-207
|
CSCD被引
5
次
|
|
|
|
7.
Stolz J E. Arsenic and selenium in microbial metabolism.
Annual Review of Microbiology,2006,60:107-130
|
CSCD被引
23
次
|
|
|
|
8.
Di Gregorio S. Selenite precipitation by a rhizospheric strain of Stenotrophomonas sp.isolated from the root system of Astragalus bisulcatus:a biotechnological perspective.
Environment International,2005,31(2):233-241
|
CSCD被引
6
次
|
|
|
|
9.
Dungan R. Microbial transformations of selenium and the bioremediation of seleniferous environments.
Bioremediation Journal,1999,3(3):171-188
|
CSCD被引
10
次
|
|
|
|
10.
Kessi J. Reduction of selenite and detoxification of elemental selenium by the phototrophic bacteriumRhodospirillum rubrum.
Applied and Environmental Microbiology,1999,65(11):4734-4740
|
CSCD被引
21
次
|
|
|
|
11.
Frankenberger Jr W T. Bioremediation of selenium-contaminated sediments and water.
BioFactors,2001,14(1/4):241-254
|
CSCD被引
3
次
|
|
|
|
12.
Losi M E. Reduction of selenium oxyanions by Enterobacter cloacae SLD1a-1:Isolation and growth of the bacterium and its expulsion of selenium particles.
Applied and Environmental Microbiology,1997,63(8):3079-3084
|
CSCD被引
8
次
|
|
|
|
13.
Zhang Y Q. Removal of selenium from river water by a microbial community enhanced with Enterobacter taylorae in organic carbon coated sand columns.
Science of the Total Environment,2005,346(1/3):280-285
|
CSCD被引
3
次
|
|
|
|
14.
王东亮. 细菌还原氧化态硒产生红色单质硒的研究进展.
微生物学报,2007,47(3):554-557
|
CSCD被引
5
次
|
|
|
|
15.
朱建明. 地衣芽孢杆菌对亚硒酸盐的还原.
矿物岩石地球化学通报,2011,30(3):245-250
|
CSCD被引
4
次
|
|
|
|
16.
中国科学院微生物研究所(译).
伯杰氏细菌鉴定手册(第八版),1984:729-758
|
CSCD被引
2
次
|
|
|
|
17.
Garbisu C. Physiological mechanisms regulating the conversion of selenite to elemental selenium by Bacillus subtilis.
BioFactors,1995,5(1):29-37
|
CSCD被引
8
次
|
|
|
|
18.
Zhang Y Q. Factors affecting reduction of selenate to elemental selenium in agricultural drainage water by Enterobacter taylorae.
Journal of Agricultural and Food Chemistry,2003,51(24):7073-7078
|
CSCD被引
3
次
|
|
|
|
19.
Watts C A. Selenate reduction by Enterobacter cloacae SLD1a-1is catalysed by a molybdenum-dependent membrane-bound enzyme that is distinct from the membrane-bound nitrate reductase.
Fems Microbiology Letters,2003,228(2):273-279
|
CSCD被引
5
次
|
|
|
|
20.
Ridley H. Development of a viologen-based microtiter plate assay for the analysis of oxyanion reductase activity:Application to the membrane-bound selenate reductase fromEnterobacter cloacae SLD1a-1.
Analytical Biochemistry,2006,358(2):289-294
|
CSCD被引
1
次
|
|
|
|
|