大气~(14)CO_2观测:2010~2011年广州城市大气中化石源CO_2浓度变化特征
Fossil fuel-derived CO_2 contribution to the urban atmosphere in Guangzhou, South China by ~(14)CO_2 observation, 2010–2011
查看参考文献28篇
文摘
|
中国科学院广州地球化学研究所(GIGCAS)大气CO_2观测点的数据显示:2010年10月至2011年11月,该站点大气CO_2浓度变化范围为460~550 mL/m~3,月平均浓度介于470~530 mL/m~3之间,呈现夏、秋季浓度低,春、冬季浓度较高的特点。大气CO_2的δ~(13)C值变化介于–9.00‰~–13.10‰之间,月平均值介于–9.60‰~–11.80‰之间,与大气CO_2浓度之间关系不显著,反映了人类活动对城市大气CO_2的影响。GIGCAS站点大气CO_2的Δ~(14)C值波动剧烈,介于29.1‰~–85.2‰之间,月平均值波动范围为4.9‰~–41.7‰,年平均大气CO_2的Δ~(14)C值为–16.4‰。较高的Δ~(14)C值出现在夏、秋两季(7~9月),均值约为–5.2‰,较低的Δ~(14)C值出现在冬、春两季(12月至次年4月)、均值约为–27.1‰,据此计算得出的化石源CO_2浓度变化范围为1~58 mL/m~3,年平均值约24 mL/m~3,较低的大气化石源CO_2浓度出现在夏、秋两季(7~9月),均值为17 mL/m~3,较高大气化石源CO_2量出现在冬、春两季(12月至次年4月),均值约为29 mL/m~3。气象条件和人类活动对城市大气化石源CO_2浓度影响巨大,调整人类活动是减少大气化石源CO_2污染的途径之一。 |
其他语种文摘
|
During October 2010 to November 2011, the urban atmospheric CO_2 concentration observed in Guangzhou Institute of Geochemistry, Chinese Academy of Sciences in Guangzhou ranges from 550 mL/m~3 to 460 mL/m~3, with the monthly mean concentration fluctuating between 530 mL/m~3 and 470 mL/m~3. It shows lower concentrations in summer and autumn, and higher concentrations in spring and winter. The CO_2 δ~(13)C values vary between –9.00‰ and –13.10‰, with the monthly mean values fluctuating between –9.60‰ and –11.80‰. The relationship between CO_2 concentration and δ~(13)C values is not significant, reflecting the influence from human activities on the urban atmospheric CO_2. The Δ~(14)C values of urban atmospheric CO_2 in Guangzhou fluctuate dramatically from 29.1‰ to –85.2‰, with an annual mean value of about –16.4‰. The monthly mean Δ~(14)C values vary between 4.9‰ and –41.7‰. The higher Δ~(14)C values mainly appear in summer and autumn (July to September), and the mean value is about –5.2‰, while, the lower Δ~(14)C values mainly appear in spring (December to April next year) and winter, with an average value of about –27.1‰. According to the Δ~(14)C values, fossil fuel-derived CO_2 concentrations are calculated ranges from 1 mL/m~3 to 58 mL/m~3, with the annual mean concentration of about 24 mL/m~3. Correspondingly, the lower fossil fuel-derived CO_2 concentrations appear in summer and autumn (July to September) and the mean value is about 17 mL/m~3, while, the higher fossil fuel-derived CO_2 concentrations appear in spring and winter (December to April next year) and the average value is about 29 mL/m~3. Weather conditions and human activities play an important role on the fuel-derived CO_2 contributed to urban atmospheric CO_2. It is feasible that human can reduce the degree of fuel-derived CO_2 pollution in urban atmosphere in Guangzhou through adjusting human activities. |
来源
|
地球化学
,2013,42(4):297-306 【核心库】
|
关键词
|
城市大气CO_2浓度
;
Δ~(14)C
;
化石源CO_2浓度
;
季节变化
;
人类活动
;
广州
|
地址
|
1.
中国科学院广州地球化学研究所, 同位素地球化学国家重点实验室, 广东, 广州, 510640
2.
中国科学院广州地球化学研究所, 同位素地球化学国家重点实验室;;物理与核技术国家重点实验室, 广东, 广州, 510640
3.
香港大学地球科学学院, 香港, 999077
4.
北京大学, 核物理与核技术国家重点实验室, 北京, 100871
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0379-1726 |
学科
|
大气科学(气象学);地质学 |
基金
|
国家自然科学基金
;
国家973计划
;
中国科学院知识创新工程项目
|
文献收藏号
|
CSCD:4928368
|
参考文献 共
28
共2页
|
1.
Solomon S.
Climate Change 2007: The Physical Science Basis,2007:996p
|
CSCD被引
1
次
|
|
|
|
2.
Keeling C D. Atmospheric carbon dioxide variations at Mauna Loa observatory, Hawaii.
Tellus,1976,28(6):538-551
|
CSCD被引
34
次
|
|
|
|
3.
温玉璞. 瓦里关山大气二氧化碳浓度变化及地表排放影响的研究.
应用气象学报,1997,8(2):129-136
|
CSCD被引
36
次
|
|
|
|
4.
王木林. 大气本底监测站的CH_4, CO_2和CO浓度的初步分析.
我国大陆和西太平洋地区大气痕量气体及其它化学物质的监测研究,1986:172-185
|
CSCD被引
1
次
|
|
|
|
5.
王庚辰. 中国大陆上空CO_2的本底浓度及其变化.
科学通报,2002,47(10):780-783
|
CSCD被引
26
次
|
|
|
|
6.
王长科. 北京城市大气CO2浓度变化特征及影响因素.
环境科学,2003,24(4):13-17
|
CSCD被引
45
次
|
|
|
|
7.
王跃思. 北京大气CO_2浓度日变化、季变化及长期趋势.
科学通报,2002,47(10):1108-1112
|
CSCD被引
21
次
|
|
|
|
8.
Suess H E. Radiocarbon concentration in modern wood.
Science,1955,122(3166):415-417
|
CSCD被引
16
次
|
|
|
|
9.
Tans P P. Natural atmospheric ~(14)C variation and the Suess effect.
Nature,1979,280(5725):826-828
|
CSCD被引
3
次
|
|
|
|
10.
Levin I. The effect of anthropogenic CO_2 and ~(14)C sources on the distribution of ~(14)CO_2 in the atmosphere.
Radiocarbon,1980,22(2):379-391
|
CSCD被引
5
次
|
|
|
|
11.
Gamnitzer U. Carbon monoxide: A quantitative tracer for fossil fuel CO_2?.
J Geophys Res,2006,111:D22302
|
CSCD被引
1
次
|
|
|
|
12.
Levin I. A novel approach for independent budgeting of fossil fuel CO_2 over Europe by ~(14)CO_2 observations.
Geophys Res Lett,2003,30(23)
|
CSCD被引
10
次
|
|
|
|
13.
Hsueh D Y. Regional patterns of radiocarbon and fossil fuel-derived CO_2 in surface air across North America.
Geophys Res Lett,2007,34(2):L02816
|
CSCD被引
8
次
|
|
|
|
14.
Turnbull J C. Comparison of ~(14)CO_2, CO, and SF_6 as tracers for recently added fossil fuel CO_2 in the atmosphere and implications for biological CO_2 exchange.
Geophys Res Lett,2006,33(1):L01817
|
CSCD被引
10
次
|
|
|
|
15.
Riley W J. Where do fossil fuel carbon dioxide emissions from California go? An analysis based on radiocarbon observations and an atmospheric transport model.
J Geophys Res,2008,113(G4)
|
CSCD被引
5
次
|
|
|
|
16.
Wang Wenwen. Spatial patterns of plant isotope tracers in the Los Angeles urban region.
Landscape Ecol,2010,25(1):35-52
|
CSCD被引
3
次
|
|
|
|
17.
Xi Xianting. Regional Δ~(14)C patterns and fossil fuel derived CO_2 distribution in the Beijing area using annual plants.
Chinese Sci Bull,2011,56(16):1721-1726
|
CSCD被引
5
次
|
|
|
|
18.
Xi Xianting. Δ~(14)C level of annual plants and fossil fuel derived CO_2 distribution across different regions of China.
Nucl Instrum Method Phys Res B,2012,294:515-519
|
CSCD被引
1
次
|
|
|
|
19.
Wang Bin. Rainy season of the Asian-Pacific summer monsoon.
J Climate,2002,15(4):386-398
|
CSCD被引
226
次
|
|
|
|
20.
Xu Xiaomei. Modifying a sealed tube zinc reduction method for preparation of AMS graphite targets: Reducing background and attaining high precision.
Nucl Instrum Method Phys Res B,2007,259(1):320-329
|
CSCD被引
26
次
|
|
|
|
|