贵州万山汞矿尾矿堆及地表水的环境地球化学特征
ENBIRONMENTAL GEOCHEMICAL CHARACTERISTICS OF MINE WASTES FORM THE WANSHAN MERCURY MINE, GUIZHOU, CHINA
查看参考文献24篇
文摘
|
对贵州万山汞矿区尾渣堆(主要为炉渣组成)、地表水及河流沉淀物的汞迁移进行了研究.由于赋矿岩石为白云岩,高温煅烧的炉渣中含CaO等碱性物质,炉渣的风化作用释放出汞以及碱性水.流经尾渣堆的地表水碱性强(pH 10.6~11.8)、电导率高,且具有明显不同的主要离子组成.万山汞矿矿石单一,主要为辰砂,其他矿石极少,因此炉渣及其渗滤水中除汞外的重金属含量很低.尾渣堆中的汞及碱性物质是对周围环境的主要威胁.在尾渣堆下游汞含量很快降低,约300 m范围内水中的溶解汞从300~1900 ng/L降至72 ng/L,而且水的碱性也被中和.但是,由于尾渣堆中的汞及碱性物质含量高,尾渣堆的长时间风化及水流的溶解会将大量汞搬运到周围的土壤及水体并对生物产生不利影响. |
其他语种文摘
|
The main purpose of this study is to assess the potential impact of mining activities of the Wanshan mercury deposit in Guizhou Province, China, on the surrounding environment. A study was conducted on the distribution of mercury in mine-waste calcine, surface waters, and stream sediments in the mining area. Host rocks of the Wanshan mercury deposit are carbonate rocks. Weathering makes the waste pile release not only mercury, but also alkaline water. Surface waters flowing through the furnace calcines pile show clearly higher pH values ranging from 10.6 to 11.8, higher EC values and different compositions of major ions. The primary ore of the Wanshan deposit is simple, dominantly cinnabar, lacking other sulfides. As a result, other heavy metals are very rare in the calcines and water drained from the mine. The high Hg concentrations and alkalinity of the calcine pile are the major threat to the surrounding environment. Dissolved Hg concentrations drop from 300 - 1900 ng/L to 72 ng/L and the alkalinity is also neutralized, indicating natural downstream attenuation. However, due to the high concentrations of Hg and alkaline substances in the calcines, weathering, erosion and mine runoff may deliver significant Hg to downstream environments with potential adverse effects on the sediment, aquatic and biological columns. |
来源
|
矿物学报
,2004,24(3):231-238 【核心库】
|
关键词
|
汞矿
;
矿山水
;
尾矿堆
|
地址
|
中国科学院地球化学研究所, 贵州, 贵阳, 550002
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1000-4734 |
学科
|
环境科学基础理论 |
基金
|
中国科学院知识创新工程重要方向项目
;
国家自然科学基金
|
文献收藏号
|
CSCD:1686310
|
参考文献 共
24
共2页
|
1.
USEPA. Mercury in water by oxidation.
Method 1631: Mercury in water by oxidation, purge and trap, and cold vapor atomic fluorescence spectrometry,1996
|
CSCD被引
1
次
|
|
|
|
2.
Feng X. Exchange flux of total gaseous mercury between air and natural water surfaces in summer season [J].
Science in China. Series D, Earth Sciences (in English),2002,45(3):211-220
|
CSCD被引
3
次
|
|
|
|
3.
Yanagisawa F. Thermal decomposition of barium sulfate-vanadium pentaoxide-silica glass mixtures for preparation of sulfur dioxide in sulfur isotope ratio measurements[J].
Anal Chem,1983,55:985-987
|
CSCD被引
15
次
|
|
|
|
4.
花永丰. 贵州万山汞矿[M].
贵州万山汞矿,1994
|
CSCD被引
2
次
|
|
|
|
5.
吴攀. 碳酸盐岩地区矿山环境地球化学研究[D].
碳酸盐岩地区矿山环境地球化学研究[博士论文],2002
|
CSCD被引
1
次
|
|
|
|
6.
Horvat M. Total mercury.
The Science of the total Environment,2003,304:231-256
|
CSCD被引
104
次
|
|
|
|
7.
Temman M. Mn and Zn incorporation into calcite as a function of chloride aqueous concentration[J].
Geochim Cosmochim Acta,2000,64(14):2417-2430
|
CSCD被引
1
次
|
|
|
|
8.
Huang Y. Partitioning of Sr2+and Mg2+into calcite under karst-analogue experimental conditions [J].
Geochim Cosmochim Acta,2001,65(1):47-62
|
CSCD被引
8
次
|
|
|
|
9.
Bilinski H. Trace metal adsorption on inorganic solid phases under esturary conditions[J].
Marine Chemistry,1991,32(2/4):225-233
|
CSCD被引
2
次
|
|
|
|
10.
Feng X. Distribution and speciation of mercury in surface waters in mercury mining areas in Wanshan.
Jurnal de Physique IV,2003,107:455-458
|
CSCD被引
6
次
|
|
|
|
11.
Biester H. Mercury speciation in tailings of the Idrija mercury mine[J].
Journal of Geochemical Exploration,1999,65:195-204
|
CSCD被引
7
次
|
|
|
|
12.
Gosar M. Mercury in the Idrija river sediments as a reflection of mining and smelting activities of the Idrija mercury mine[J].
Journal of Geochemical Exploration,1997,58:125-131
|
CSCD被引
2
次
|
|
|
|
13.
Hines M E. Mercury biogeochemistry in the Idrija River.
Environmental Research Section A,2000,83:129-139
|
CSCD被引
8
次
|
|
|
|
14.
Gray J E. Environmental geochemistry of abandoned mercury mines in West-Central Nevada.
Appl Geochem,2002,17:1069-1079
|
CSCD被引
2
次
|
|
|
|
15.
Gray J E. Distribution.
The Science of the Total Environment,2000,260:21-33
|
CSCD被引
6
次
|
|
|
|
16.
Kim C S. an EXAFS spectroscopy study [J].
Appl Geochem,2004,19(3):379-393
|
CSCD被引
5
次
|
|
|
|
17.
Suchanek T H. Redistribution of mercury from contaminated lake sediments of Clear Lake.
Water, Air, & Soil Pollution,1998,104:77-102
|
CSCD被引
1
次
|
|
|
|
18.
Gray J E. An overview of mercury transport.
Materials Geoenvir,2001,48:2-7
|
CSCD被引
1
次
|
|
|
|
19.
Rytuba J J. Mercury mine drainage and processes that control its environmental impact [J].
The Science of the Total Environment,2000,260:57-71
|
CSCD被引
5
次
|
|
|
|
20.
Taylor B E. Experimental Oxidation of Pyrite [J].
Geochim Cosmochim Acta,1985,48:2669-2678
|
CSCD被引
4
次
|
|
|
|
|