石墨烯折纸超材料梁结构的屈曲分析
Buckling Analysis of Graphene Origami Metamaterial Beam
查看参考文献35篇
文摘
|
石墨烯折纸超材料具有负泊松比特性,可以有效提升结构的抗屈曲性能,在航空航天等工程领域中有着广泛的应用潜力.本文以石墨烯折纸超材料梁为研究对象,基于虚功原理,根据欧拉梁理论和冯卡门非线性应变位移关系,建立了梁在面内载荷作用下发生屈曲行为的非线性控制方程;采用数值渐进方法计算出了石墨烯折纸超材料梁发生屈曲行为的临界载荷,通过与已发表文献结果进行对比,验证了本文理论和算法的正确性.最后分析了石墨烯折纸的分布、含量、折叠度和边界条件对超材料梁结构非线性屈曲行为的影响,结果表明两端固支边界下结构的屈曲临界载荷最大,在结构表层分布更多的石墨烯、石墨烯含量的增大都会使屈曲临界载荷增大,而折叠度的增大会导致临界载荷减小. |
其他语种文摘
|
Graphene origami metamaterial has characteristics of negative Poisson's ratio, which can effectively improve the buckling resistance of the structure, and has a wide range of application potentials in aerospace and other engineering fields. In this paper, the graphene origami metamaterial beam is taken as the research object. Based on the principle of virtual work, according to the Euler beam theory and von-Karman's nonlinear strain displacement relationship, the nonlinear governing equation of the beam's buckling behavior under the in-plane load is established. The critical load of the buckling behavior of graphene origami metamaterial beam is calculated using the asymptotic numerical method, and the correctness of the theory and the algorithm in this paper is verified by comparing with the results in the published literature. Finally, the influences of graphene origami distribution, content, folding degree and boundary conditions on the nonlinear buckling behavior of graphene origami metamaterial beam structure are analyzed. The results show that the buckling critical load of the structure is the largest under the fixed boundary condition at both ends. The buckling critical load increases with the increase of graphene and graphene content on the surface of the structure, while decreases with the increase of folding degree. |
来源
|
力学季刊
,2024,45(1):248-258 【扩展库】
|
DOI
|
10.15959/j.cnki.0254-0053.2024.01.022
|
关键词
|
超材料
;
石墨烯增强复合材料
;
梁结构
;
非线性屈曲
;
数值渐进法
|
地址
|
北京信息科技大学理学院, 北京, 100192
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0254-0053 |
学科
|
一般工业技术 |
基金
|
国家自然科学基金
|
文献收藏号
|
CSCD:7683878
|
参考文献 共
35
共2页
|
1.
Buckmann T. Tailored 3D mechanical metamaterials made by dip-in direct-laserwriting optical lithography.
Advanced Materials,2012,24(20):2710-2714
|
CSCD被引
26
次
|
|
|
|
2.
Chen Y Y. Lattice metamaterials with mechanically tunable Poisson's ratio for vibration control.
Physical Review Applied,2017,7(2):024012
|
CSCD被引
9
次
|
|
|
|
3.
Shen H S. Effect of negative Poisson's ratio on the postbuckling behavior of pressure-loaded FGGRMMC laminated cylindrical shells.
Engineering Structures,2021,243:112458
|
CSCD被引
1
次
|
|
|
|
4.
Ren X. Auxetic metamaterials and structures: a review.
Smart Materials and Structures,2018,27(2):023001
|
CSCD被引
29
次
|
|
|
|
5.
Scarpa F. Mechanical properties of auxetic tubular truss-like structures.
Physica Status Solid,2008,245(3):584-590
|
CSCD被引
5
次
|
|
|
|
6.
Zhang Y C. Enhancing buckling capacity of a rectangular plate under uniaxial compression by utilizing an auxetic material.
Chinese Journal of Aeronautics,2016,29(4):945-951
|
CSCD被引
2
次
|
|
|
|
7.
Zhao S Y. Significantly improved interfacial shear strength in graphene/copper nanocomposite via wrinkles and functionalization: A molecular dynamics study.
Carbon,2021,174:335-344
|
CSCD被引
2
次
|
|
|
|
8.
Zhao S Y. Folded graphene reinforced nanocomposites with superior strength and toughness: A molecular dynamics study.
Journal of Materials Science & Technology,2022,120:196-204
|
CSCD被引
4
次
|
|
|
|
9.
Zhao S Y. Graphene origami-enabled auxetic metallic metamaterials: An atomistic insight.
International Journal of Mechanical Sciences,2021,212:106814
|
CSCD被引
1
次
|
|
|
|
10.
Zhao S Y. Genetic programming assisted micromechanical models of graphene origami-enabled metal metamaterials.
Acta Materialia,2022,228:117791
|
CSCD被引
1
次
|
|
|
|
11.
Zhao S Y. Enhanced thermal buckling resistance of folded graphene reinforced nanocomposites with negative thermal expansion: From atomistic study to continuum mechanics modelling.
Composite Structures,2022,279:114872
|
CSCD被引
2
次
|
|
|
|
12.
Murari B. Static and dynamic instability of functionally graded graphene origamienabled auxetic metamaterial beams with variable thickness in fluid.
Ocean Engineering,2023,280:114859
|
CSCD被引
1
次
|
|
|
|
13.
吴文旺. 负泊松比结构力学设计、抗冲击性能及在车辆工程应用与展望.
力学学报,2021,53(3):611-638
|
CSCD被引
23
次
|
|
|
|
14.
McPherson B N. Dynamics and estimation of origami-inspired deployable space structures: A review.
AIAA Scitech 2019 Forum,2019:480
|
CSCD被引
3
次
|
|
|
|
15.
Yang J. Buckling and postbuckling of functionally graded multilayer graphene platelet-reinforced composite beams.
Composite Structures,2017,161:111-118
|
CSCD被引
11
次
|
|
|
|
16.
Feng C. Nonlinear free vibration of functionally graded polymer composite beams reinforced with graphene nanoplatelets (GPLs).
Engineering Structures,2017,140:110-119
|
CSCD被引
4
次
|
|
|
|
17.
Feng C. Nonlinear bending of polymer nanocomposite beams reinforced with nonuniformly distributed graphene platelets (GPLs).
Composites Part B: Engineering,2017,110:132-140
|
CSCD被引
8
次
|
|
|
|
18.
卢港伟. 弹性地基上Euler-Bernoulli梁的临界荷载计算.
安徽工程大学学报,2021,36(3):47-53
|
CSCD被引
1
次
|
|
|
|
19.
熊海超. 功能梯度梁临界荷载与固有频率的微分求积法计算.
安徽工程大学学报,2021,36(2):49-55
|
CSCD被引
1
次
|
|
|
|
20.
Yas M H. Thermal buckling analysis of porous functionally graded nanocomposite beams reinforced by graphene platelets using generalized differential quadrature method.
Aerospace Science and Technology,2020,107:106261
|
CSCD被引
8
次
|
|
|
|
|