帮助 关于我们

返回检索结果

基于Copula函数和M-K检验的时空数据异常识别方法
Outlier recognition method for spatio-temporal data based-on copula function and M-K test

查看参考文献20篇

李建勋 1   张锐军 1   Safonov Paul 2   佟瑞 1  
文摘 针对时空数据异常识别精度不足的问题,从时间维度和空间维度融合思想出发,构建了一个时空数据异常识别框架.基于该框架,在分布未知情况下,采用阿基米德Copula函数推导了不同空间位置属性数据之间的差异概率.与此同时,建立了以高值点数为核心的空间数据转化方法,形成了空间秩序列,确定了用于假设检验的期望和方差.最后,以窗口大小、范围半径为模型参数,通过M-K检验给出了异常数据的识别方法.实验表明,该方法能够进一步提高时空数据异常检测精度,具有更强的识别能力.
其他语种文摘 Aiming at the problem of low accuracy of outlier recognition for spatio-temporal data,a framework was constructed according to fusion thought of time dimension and space dimension.Based on the framework,the difference of attribute data between different positions was derived by Archimedean copulas function under the condition of unknown distribution.A method for converting spatial data was established with high value as a core to build rank series.Then,the expectation and variance were determined for hypothesis test.Finally,with the model parameters of window size and scope radius,an approach of outlier recognition for spatio-temporal data was given based-on M-K test.The calculation example and application analysis show that this approach can improve the accuracy of outlier recognition for spatio-temporal data,and has more recognition capability.
来源 系统工程理论与实践 ,2019,39(12):3229-3236 【核心库】
DOI 10.12011/1000-6788-2017-2201-08
关键词 时空数据 ; 异常识别 ; M-K检验 ; Copula函数
地址

1. 西安理工大学经济与管理学院, 西安, 710048  

2. 圣克劳德州立大学赫伯格商学院, 圣克劳德, 56301

语种 中文
文献类型 研究性论文
ISSN 1000-6788
学科 自动化技术、计算机技术
基金 “十二五”国家水体污染控制与治理重大专项课题 ;  陕西省社会科学规划项目 ;  陕西省教育厅专项科研计划项目
文献收藏号 CSCD:6697624

参考文献 共 20 共1页

1.  李光强. 时空数据异常探测方法. 计算机工程,2010,36(5):35-37 CSCD被引 6    
2.  Da X W. Outlier detection and accommodation in general spatial models. Statistical Methods & Applications,2016,25(3):453-475 CSCD被引 1    
3.  Shekhar S. A unified approach to detecting spatial outliers. Geo Informatica,2003,7(2):139-166 CSCD被引 38    
4.  Lu C T. Multivariate spatial outlier detection. International Journal on Artificial Intelligence Tools,2004,13(4):801-811 CSCD被引 1    
5.  Hu T M. A trimmed mean approach to finding spatial outliers. Intelligent Data Analysis,2004,8(1):79-95 CSCD被引 3    
6.  Militino A F. Outliers detection in multivariate spatial linear models. Journal of Statistical Planning and Inference,2006,136(1):125-146 CSCD被引 2    
7.  Janeja V P. Spatial outlier detection in heterogeneous neighborhoods. Intelligent Data Analysis,2009,13(1):85-107 CSCD被引 1    
8.  Filzmoser P. Identification of local multivariate outliers. Statistical Papers,2014,55(1):29-47 CSCD被引 1    
9.  Harris P. Multivariate spatial outlier detection using robust geographically weighted methods. Mathematical Geosciences,2014,46(1):1-31 CSCD被引 1    
10.  贾远信. 基于时间序列相似性的自动观测数据时空异常探测方法研究. 遥感技术与应用,2015,30(4):700-705 CSCD被引 2    
11.  Appice A. Dealing with temporal and spatial correlations to classify outliers in geophysical data streams. Information Sciences,2014,285:162-180 CSCD被引 1    
12.  Schmid T. Outlier robust small-area estimation under spatial correlation. Scandinavian Journal of Statistics,2016,43(3):806-826 CSCD被引 1    
13.  Ernst M. Comparison of local outlier detection techniques in spatial multivariate data. Data Mining and Knowledge Discovery. 6,2016:1-29 CSCD被引 1    
14.  Barua S. High performance computing for spatial outliers detection using parallel wavelet transform. Intelligent Data Analysis,2007,11(6):707-730 CSCD被引 1    
15.  Fontes V C. Discovering semantic spatial and spatio-temporal outliers from moving object trajectories,2013:1-8 CSCD被引 1    
16.  Matkan A A. Spatial analysis for outlier removal from LiDAR data. International Archives of the Photogrammetry,Remote Sensing and Spatial Information Sciences,2014,40(2W3):187-190 CSCD被引 1    
17.  Lee J. Fast outlier detection using a grid-based algorithm. PLoS One,2016,11(11):1-11 CSCD被引 3    
18.  Shi Y. Adaptive detection of spatial point event outliers using multilevel constrained Delaunay triangulation. Computers,Environment & Urban Systems,2016,59:164-183 CSCD被引 7    
19.  Kendall M G. The advanced theory of statistics Vol. I:Distribution theory,1980:1-200 CSCD被引 1    
20.  Nelsen R B. An introduction to Copulas,1999:1-80 CSCD被引 2    
引证文献 3

1 薛刚 利用多源数据识别城市轨道交通个体异常乘车行为 数据分析与知识发现,2023,7(7):46-57
CSCD被引 0 次

2 陈晓红 基于深度自编码器的自适应异常检测算法及其应用研究 系统工程理论与实践,2024,44(8):2718-2732
CSCD被引 0 次

显示所有3篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号