蜂窝结构力学超材料弹性及抗冲击性能的研究进展
Progress in elastic property and impact resistance of honeycomb structure mechanical metamaterial
查看参考文献54篇
文摘
|
具有手性蜂窝结构的力学超材料是近年来发展起来的高性能工程材料,它具有轻质、高比刚度、负泊松比、结构参数可调以及力学性能稳定等优点。其不仅可以实现面内变形,面外承载的双重力学作用,还具有出色的隔振、吸声降噪以及控制弹性波的传播等工程应用潜质,在智能结构、车辆船舶、航空航天等领域具有巨大的发展潜力。本文从其弹性和抗冲击两个力学性能方面进行综述。首先介绍并评述了近年来蜂窝结构力学超材料的面内杨氏模量、负泊松比特性以及面外剪切模量等弹性性能的理论分析研究进展。在抗冲击性能方面,从力学模型建立和有限元分析的角度出发,对手性蜂窝结构力学超材料在冲击载荷作用下的整体变形及其抗冲击性能的研究现状分别进行了评述。最后指出针对蜂窝结构力学超材料弹性及冲击性能的研究,可进一步建立内部韧带变形及力的传递力学模型以及深入探索冲击过程吸能机理等,以期为该类力学超材料内部韧带和节点环结构的优化设计提供参考。 |
其他语种文摘
|
Mechanical metamaterial composed of chiral honeycomb structure is high performance engineering materials developed in recent years. They have the advantages of light weight, high specific stiffness, negative Poisson's ratio, adjustable structural parameters and stable mechanical properties. It not only can realize the dual mechanical functions of in-plane deformation and out-of-plane load-bearing, but also has excellent engineering application performance such as vibration isolation and sound absorption and noise reduction and control of elastic wave propagation. It has great potential in the fields of intelligent structure, vehicle, ship, aerospace and so on. Two mechanical aspects of its elastic properties and impact resistance were reviewed.First, the progress of theoretical analysis and research on the elastic properties such as the surface poplar modulus, negative Poisson's ratio, and elastic properties of external shear modulus of mechanical metamaterials were reviewed and commented. Further, in the aspect of impact resistance, the overall deformation and impact resistance of the existing chiral honeycomb mechanical metamaterials under impact load were reviewed based on perspectives of model establishment and finite element analysis. Finally, it was pointed out that in the further research of elasticity and impact properties, the mechanical model of internal ligament deformation and force transmission can be further established and the energy absorption mechanism of the impact process to be further explored so as to provide the reference for the optimization design of the internal structure of ligaments and node rings in this type of metamaterial. |
来源
|
材料工程
,2019,47(8):49-58 【核心库】
|
DOI
|
10.11868/j.issn.1001-4381.2018.001476
|
关键词
|
蜂窝结构力学超材料
;
负泊松比
;
弹性性能
;
抗冲击性能
|
地址
|
福建农林大学机电工程学院, 福州, 350002
|
语种
|
中文 |
文献类型
|
综述型 |
ISSN
|
1001-4381 |
学科
|
力学 |
基金
|
国家自然科学基金资助项目
;
福建省自然科学基金
|
文献收藏号
|
CSCD:6567669
|
参考文献 共
54
共3页
|
1.
Wojchowski K W. Two-dimensional isotropic system with a negative Poisson's ratio.
Physics Letters A,1989,137(Suppl 1/2):60-64
|
CSCD被引
1
次
|
|
|
|
2.
Gibson L J.
Cellular solids:structure and proper-ties.2nd ed,1997
|
CSCD被引
1
次
|
|
|
|
3.
Liu H H. A review on auxetic structures and polymeric materials.
Scientific Research and Essays,2010,5(10):1052-1063
|
CSCD被引
1
次
|
|
|
|
4.
Spadoni A. Phononic properties of hexagonal chiral lattices.
Wave Motion,2009,46(7):435-450
|
CSCD被引
28
次
|
|
|
|
5.
Tee K F. Wave propagation in auxetic tetrachiral honeycombs.
Journal of Vibration and Acoustics,2010,132(3):1-8
|
CSCD被引
5
次
|
|
|
|
6.
于相龙. 智能超材料研究与进展.
材料工程,2016,44(7):119-128
|
CSCD被引
22
次
|
|
|
|
7.
礼嵩明. “超材料”结构吸波复合材料技术研究.
材料工程,2017,45(11):10-14
|
CSCD被引
15
次
|
|
|
|
8.
Lakes R S. Foam structures with a negative Poisson's ratio.
Science,1987,235:1038-1040
|
CSCD被引
132
次
|
|
|
|
9.
Chan N. Fabrication methods for auxetic foams.
Journal of Materials Science,1997,32(22):5945-5953
|
CSCD被引
4
次
|
|
|
|
10.
Gibson L J.
Cellular solids,1988
|
CSCD被引
6
次
|
|
|
|
11.
Lakes R S. Deformation mechanisms of negative Poisson's ratio materials:structural aspects.
Journal of Materials Science,1991,26(9):2287-2292
|
CSCD被引
23
次
|
|
|
|
12.
Prall D. Properties of a chiral honeycomb with a Poisson's ratio-1.
International Journal of Mechanical and Science,1996,39:305-314
|
CSCD被引
48
次
|
|
|
|
13.
Mousanezhad D. Elastic properties of chiral,anti-chiral,and hierarchical honeycombs: A simple energy-based approach.
Theoretical and Applied Mechanics Letters,2016,6(2):81-96
|
CSCD被引
13
次
|
|
|
|
14.
Gibson L J. The mechanics of three-dimen-sional cellular materials.
Proceedings of the Royal Society A:Mathematical, Physical and Engineering Sciences,1982,382(1782):43-59
|
CSCD被引
22
次
|
|
|
|
15.
Spadoni A. Global and local linear buckling behavior of a chiral cellular structure.
Physica Status Solidi (b),2005,242(3):695-709
|
CSCD被引
5
次
|
|
|
|
16.
Scarpa F. Elastic buckling of hexagonal chiral cell honeycombs.
Composites Part A (Applied Science and Manufacturing),2007,38(2):280-289
|
CSCD被引
11
次
|
|
|
|
17.
Lorato A. The transver-se elastic properties of chiral honeycombs.
Composites Science and Technology,2010,70(7):1057-1063
|
CSCD被引
11
次
|
|
|
|
18.
Alderson A. Elastic constants of 3-,4-and 6-connected chiral anti-chiral honey-combs subject to uniaxial in-plane loading.
Composites Science and Technology,2010,70(7):1042-1048
|
CSCD被引
41
次
|
|
|
|
19.
Miller W. Flatwise buck-ling optimization of hexachiral and tetrachiral honey-combs.
Composites Science and Technology,2010,70(7):1049-1056
|
CSCD被引
10
次
|
|
|
|
20.
Chen Y J. Elasticity of anti-tetrachiral anisotropic lattices.
International Journal of Solids and Structures,2013,50(6):996-1004
|
CSCD被引
10
次
|
|
|
|
|