帮助 关于我们

返回检索结果

时空点过程:一种新的地学数据模型、分析方法和观察视角
Spatiotemporal Point Process:A New Data Model, Analysis Methodology and Viewpoint for Geoscientific Problem

查看参考文献38篇

裴韬 *   李婷   周成虎  
文摘 栅格计算因其具有简单的构架成为目前地学分析的主流模型,然而,由于栅格计算平均分配计算和存储资源的弱点,不仅容易产生冗余,更重要的是难以凸显研究对象的突变部分,从而使研究者有可能忽略地学现象的变化特征。为此,本文提出将时空点过程模型应用于地学研究。时空点过程不仅适用于模拟以点事件为基本单元的地学现象,而且由于大多数地学过程可以转化为时空点过程,故其具有更广泛的应用范围。因此,时空点过程不仅是一种数据模型,同时也是地学问题的分析方法,更是观察和理解地学问题的一种新视角。为了实现从点过程数据中提取模式,作者经过多年研究提出了时空点过程层次分解理论框架,该理论与信号处理理论中的谱分析思路类似,首先,假设任意点集为有限多个均匀点过程的叠加,然后,通过点局部密度表达工具K阶邻近距离,将空间点转换为混合概率密度函数,再应用优化方法将混合密度函数进行分解得到丛集点和噪声,最终利用密度相连原理从丛集点中提取模式。该理论框架可适用于绝大多数点集数据,初步实现了点集数据的“傅里叶变换”。
其他语种文摘 The gridding computation is a major model in current geoscientific research due to its simplicity in organizing data resources. However, because the gridding computation equally distributes computational resources, it brings redundancy to the computational process and neglects catastrophe points in geoscientific phenomena, which might overlook the important patterns and bring more uncertainties to the research result. To overcome this weakness, this paper proposes to use the spatial point process model in geoscientific research. The spatial point process model is used to model spatial point based geoscientific phenomenon, also is applied to most of the other geoscientific processes (because they can be transformed into spatial point processes). In this regard, the spatial point process is not only a data model, but also an analysis tool for geoscientific problems. Moreover, it provided a new angle of view for observing geoscientific problems. To extract patterns from point process data, the authors propose the frame of multilevel decomposition of spatiotemporal point process. This frame is similar to the basic idea of signal decomposition. We first assume that any point data set is the overlay of an unknown number of homogeneous point processes. Then, the points are transformed into a mixture probability density function of the K~(th) nearest distance of each point. After that, the optimization method is used to separate clustering points from noise. Finally, the patterns are extracted using the density connectivity mechanism. The theory can be used to any type of point process data. It can be considered as the "Fourier transform" of point process data.
来源 地球信息科学学报 ,2013,15(6):793-800 【核心库】
关键词 聚类 ; 数据挖掘 ; K阶邻近距离 ; 泊松过程 ; 非均匀点过程
地址

中国科学院地理科学与资源研究所, 资源与环境信息系统国家重点实验室, 北京, 100101

语种 中文
文献类型 研究性论文
ISSN 1560-8999
学科 测绘学
基金 国家自然科学基金面上项目 ;  国家863计划
文献收藏号 CSCD:5011707

参考文献 共 38 共2页

1.  邓永录. 随机点过程及其应用,1998 CSCD被引 14    
2.  杨萍. 利用空间点过程提取丛集点算法的适用性研究. 物理学报,2009,58(3):2097-2105 CSCD被引 5    
3.  李长江. 论矿床的分形性质. 浙江地质,1994(2):25-31 CSCD被引 6    
4.  Pei T. Clustering of temporal event processes. International Journal of Geographical Information Science,2013,27(3):484-510 CSCD被引 5    
5.  Illian J. Statistical analysis and modelling of spatial point patterns,2008 CSCD被引 31    
6.  Cressie N. Statistics for spatial data,1993 CSCD被引 30    
7.  Lloyd M. Mean crowding. The Journal of Animal Ecology,1967,36(1):1-30 CSCD被引 100    
8.  Douglas J B. Clustering and aggregation. Sankhya: The Indian Journal of Statistics, Series B,1975,37(4):398-417 CSCD被引 1    
9.  Assuncao R. Testing spatial randomness by means of angles. Biometrics,1994,50(2):531-537 CSCD被引 3    
10.  Trifkovic S. Indexing of spatial patterns of trees using a mean of angles. Journal of Forest Research,2008,13(2):117-121 CSCD被引 2    
11.  Eberhardt L L. Some developments in distance sampling. Biometrics,1967,23(2):207-216 CSCD被引 4    
12.  Johnson R B. A more powerful test for dispersion using distance measurements. Ecology,1985,66(5):1669-1675 CSCD被引 3    
13.  Prayag V R. Testing randomness of spatial pattern using Eberhardt's index. Environmetrics,2000,11(5):571-582 CSCD被引 1    
14.  Lucio P S. Detecting randomness in spatial point patterns: A "Stat-Geometrical" alternative. Mathematical Geology,2004,36(1):79-99 CSCD被引 2    
15.  Mugglestone M A. Spectral tests of randomness for spatial point patterns. Environmental and Ecological Statistics,2001,8(3):237-251 CSCD被引 1    
16.  Ripley B D. Modelling spatial patterns. Methodological,1977,39(2):172-212 CSCD被引 256    
17.  Diggle P J. A nonparametric estimator for pairwise-interaction point processes. Biometrika,1987,74(4):763-770 CSCD被引 1    
18.  Schiffers K. Dealing with virtual aggregation--a new index for analyzing heterogeneous point patterns. Ecography,2008,31(5):545-555 CSCD被引 11    
19.  Pei T. A non-parameter index for differentiating between heterogeneity and randomness. Mathematical Geosciences,2011(43):345-362 CSCD被引 1    
20.  Kulldorff M. A spatial scan statistic. Communications in Statistics-Theory and methods,1997,26(6):1481-1496 CSCD被引 91    
引证文献 7

1 唐炉亮 城市出租车上下客的GPS轨迹时空分布探测方法 地球信息科学学报,2015,17(10):1179-1186
CSCD被引 16

2 康顺 Voronoi邻近关系支持下的点模式趋同提取方法 测绘学报,2017,46(5):649-657
CSCD被引 4

显示所有7篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号