基于深度学习的小目标检测研究与应用综述
A Survey of Research and Application of Small Object Detection Based on Deep Learning
查看参考文献56篇
文摘
|
目标检测在基于传统手工特征及深度学习算法上已经取得较大发展,然而针对小目标检测的研究近几年才开始出现,研究成果较少,且大都是在已有目标检测算法基础上进行改进,以提高小目标检测的检测精度.小目标像素点少,本身携带的特征少,多次下采样后就更难进行特征提取,因而小目标检测面临极大挑战.小目标检测在自动驾驶、遥感图像检测、刑侦等领域都有广泛应用需求,对于小目标检测技术的研究有重要的实用价值.本文对小目标检测的现有研究成果进行了详细综述.首先,将现有算法按照检测需要的阶段数分为一阶段、二阶段、多阶段,描述了RetinaNet、CornerNet-Lite、特征金字塔网络(Feature Pyramid Network,FPN)等算法的原理并进行了对比分析.其次,本文描述了小目标检测技术在不同领域的应用情况,并汇总了MS COCO、PASCAL VOC、DOTA、KITTI等数据集及算法性能评价指标.最后,总结了小目标检测面临的挑战,并展望了未来的研究方向. |
其他语种文摘
|
Object detection has been well studied based on the traditional manual features and deep learning algorithm.However,the research on small object detection has just begun in recent years and there are little research outcome available.Furthermore,most of the methods proposed are based on the traditional object detection algorithms with certain modifications so as to improve the accuracy of small object detection.Small object contains fewer pixels and has less features,and it is even harder to extract object features after down sampling.Hence,small object detection is a challenging task.Small object detection has a wide range of application requirements in the fields of automatic driving,remote sensing image detection,and criminal investigation.It has important practical value for the research of small object detection technology.In this paper,the existing research results of small object detection are summarized.Firstly,the existing algorithms are classified into one stage,two stages and multi-stages according to the number of stages for detection.The principles of RetinaNet、CornerNet-Lite、feature pyramid network(FPN)and other algorithms are described and compared.Secondly,this paper describes the application of small object detection technology in different fields,and summarizes the data sets such as MS COCO、PASCAL VOC、DOTA、KITTI and algorithm performance evaluation indicators.Finally,the challenges faced by small object detection are concluded,and the future research directions are prospected. |
来源
|
电子学报
,2020,48(3):590-601 【核心库】
|
DOI
|
10.3969/j.issn.0372-2112.2020.03.024
|
关键词
|
小目标检测
;
尺度变换
;
特征金字塔
;
深度学习
;
特征提取
;
卷积神经网络
|
地址
|
1.
电子信息现场勘验应用技术公安部重点实验室, 电子信息现场勘验应用技术公安部重点实验室, 陕西, 西安, 710121
2.
陕西省无线通信与信息处理技术国际合作研究中心, 陕西省无线通信与信息处理技术国际合作研究中心, 陕西, 西安, 710121
3.
西安邮电大学图像与信息处理研究所, 陕西, 西安, 710121
|
语种
|
中文 |
文献类型
|
综述型 |
ISSN
|
0372-2112 |
学科
|
自动化技术、计算机技术 |
基金
|
陕西省国际合作交流项目
;
国家自然科学基金
;
国家重点研发计划
|
文献收藏号
|
CSCD:6770107
|
参考文献 共
56
共3页
|
1.
Kisantal M. Augmentation for Small Object Detection.
arXiv:1902.07296v1,2019
|
CSCD被引
1
次
|
|
|
|
2.
.
wq604887956.小目标检测文章总结,2018
|
CSCD被引
1
次
|
|
|
|
3.
Lin T Y. Microsoft COCO:Common objects in context.
The 13th European Conference on Computer Vision(ECCV),2014:740-755
|
CSCD被引
1
次
|
|
|
|
4.
Bodla N. Soft-NMS-Improving object detection with one line of code.
2017 IEEE International Conference on Computer Vision,2017:5561-5569
|
CSCD被引
4
次
|
|
|
|
5.
Li Y H. Scale-aware Trident Networks for Object Detection.
arXiv:1901.01892,2019
|
CSCD被引
2
次
|
|
|
|
6.
王海屹.
基于特征融合的小物体目标检测研究与应用,2018
|
CSCD被引
1
次
|
|
|
|
7.
Eggert C. A closer look:Small object detection in faster R-CNN.
2017 IEEE International Conference on Multimedia and Expo (ICME),2017:421-426
|
CSCD被引
1
次
|
|
|
|
8.
刘晓楠. 基于深度学习的小目标检测研究综述.
战术导弹技术,2019,193(1):106-113
|
CSCD被引
2
次
|
|
|
|
9.
Takeki A. Combining deep features for object detection at various scales:finding small birds in landscape images.
IPSJ Transactions on Computer Vision & Applications,2016,8(1):5
|
CSCD被引
11
次
|
|
|
|
10.
Kampffmeyer M. Semantic segmentation of small objects and modeling of uncertainty in urban remote sensing images using deep convolutional neural networks.
2016 IEEE Conference on Computer Vision and Pattern Recognition Workshops,2016:680-688
|
CSCD被引
1
次
|
|
|
|
11.
Mundhenk T N. A large contextual dataset for classification detection and counting of cars with deep learning.
The 14th European Conference on Computer Vision,2016:785-800
|
CSCD被引
1
次
|
|
|
|
12.
Reny. Small object detection in optical remote sensing images via modified faster R-CNN.
Applied Sciences,2018,8(5):813
|
CSCD被引
17
次
|
|
|
|
13.
Eggert C. Improvingsmall object proposals for company logo detection.
Proceedings of The 2017 ACM on International Conference on Multimedia Retrieval,2017:167-174
|
CSCD被引
3
次
|
|
|
|
14.
于进勇. 卷积神经网络在目标检测中的应用综述.
计算机科学,2018,45(S2):27-36
|
CSCD被引
2
次
|
|
|
|
15.
Hariharan B. Hypercolumns forobject segmentation and fine-grained localization.
2014 IEEE Conference on Computer Vision and Pattern Recognition,2014:447-456
|
CSCD被引
1
次
|
|
|
|
16.
李旭冬. 基于卷积神经网络的目标检测研究综述.
计算机应用研究,2017,34(10):2881-2886
|
CSCD被引
37
次
|
|
|
|
17.
周俊宇. 卷积神经网络在图像分类和目标检测应用综述.
计算机工程与应用,2017,53(13):34-41
|
CSCD被引
44
次
|
|
|
|
18.
崔广新. 基于自编码算法的深度学习综述.
计算机系统应用,2018,27(9):47-51
|
CSCD被引
7
次
|
|
|
|
19.
徐毅. 改进的深度置信网络分类算法研究.
计算机科学与探索,2019,13(4):596-607
|
CSCD被引
3
次
|
|
|
|
20.
He K M. Deep residual learning for image recognition.
Proceedings of The 2016 IEEE Conference on Computer Vision and Pattern Recognition,2016:770-778
|
CSCD被引
305
次
|
|
|
|
|