3D打印琼脂糖和海藻酸钠复合水凝胶组织与性能研究
Microstructure and properties of 3D printed agarose and sodium alginate composite hydrogel
查看参考文献21篇
文摘
|
组织工程支架要求材料具有良好的生物相容性、相匹配的力学性能,以及利于细胞生长繁殖的形貌和结构。尽管人们已经开发出了大量生物材料用于制备组织工程支架,然而,组织工程支架的成形困难和力学性能差等问题仍然严重限制着其发展。以海藻酸钠为原材料,通过添加琼脂糖增强其力学性能,研究不同比例海藻酸钠/琼脂糖复合凝胶的结构和形貌变化,测试其力学性能。利用直写打印成形复合水凝胶支架,观察复合凝胶中微观孔隙的大小。结果表明:不同比例的海藻酸钠/琼脂糖复合凝胶含水量差异较小,均在90%附近。除了纯琼脂糖凝胶和体积比为1:2的复合凝胶外,其他比例的复合凝胶表面和断面均比较粗糙。琼脂糖能在一定程度上增强复合凝胶,海藻酸钠与琼脂糖的体积比2:1的复合凝胶压缩模量最高,可达0.353MPa。碳酸钙的分解在复合凝胶中产生了亚微米级的孔隙,因此制备出的复合凝胶具有适合细胞生长繁殖的粗糙表面和微观孔隙。 |
其他语种文摘
|
The biological scaffolds of tissue engineering are required to have good biocompatibility,matched mechanical properties,as well as morphology and microstructure for cell growth and reproduction.Although a large number of biomaterials have been developed to prepare tissueengineering scaffolds,the forming problems and poor mechanical properties of the scaffolds still seriously limit the development of tissue engineering.The sodium alginate was used as raw material,and its mechanical properties were enhanced by agarose.The structure and morphology of sodium alginate/agarose composite hydrogels with different ratios were studied,the mechanical properties were tested.In addition,the composite hydrogel scaffold was formed by direct ink writing,and the size of the microscopic pores in composite hydrogels were designed and observed.The results show that the composite hydrogels with different ratios have little difference in water content,all around 90%.Apart from the pure agarose gel and the composite gel with a volume ratio of 1:2,the surface and cross section of the composite gel in other ratios are relatively rough.Agarose can enhance the composite gel to a certain extent,and the composite gel with the volume ratio of sodium alginate to agarose of 2:1 has the highest compression modulus,which can reach 0.353 MPa.The decomposition of calcium carbonate created submicron pores in the composite hydrogel,therefore the prepared composite hydrogel has rough surface and micro-pores,which is conducive for cell growth and reproduction. |
来源
|
材料工程
,2021,49(5):66-74 【核心库】
|
DOI
|
10.11868/j.issn.1001-4381.2020.000011
|
关键词
|
组织工程支架
;
海藻酸钠
;
琼脂糖
;
3D打印
;
力学性能
;
微观孔隙
|
地址
|
华中科技大学, 材料成形与模具技术国家重点实验室, 武汉, 430074
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1001-4381 |
学科
|
一般工业技术 |
基金
|
华中科技大学青年前沿学术团队项目
|
文献收藏号
|
CSCD:6973163
|
参考文献 共
21
共2页
|
1.
Rudge C. International practices of organ donation.
British Journal of Anaesthesia,2012,108(Suppl 1):48-55
|
CSCD被引
2
次
|
|
|
|
2.
Khojasteh A. Current trends in mesenchymal stem cell application in bone augmentation: a review of the literature.
Journal of Oral and Maxillofacial Surgery,2012,70(4):972-982
|
CSCD被引
4
次
|
|
|
|
3.
Khojasteh A. Effects of different growth factors and carriers on bone regeneration:a systematic review.
Oral Surgery,Oral Medicine,Oral Pathology and Oral Radiology,2013,116(6):405-423
|
CSCD被引
5
次
|
|
|
|
4.
Shayesteh Y S. Sinus augmentation using human mesenchymal stem cells loaded into a beta-tricalcium phosphate/hydroxyapatite scaffold.
Oral Surgery,Oral Medicine,Oral Pathology,Oral Radiology and Endodontology,2008,106(2):203-209
|
CSCD被引
5
次
|
|
|
|
5.
Shieh S J. State-of-the-art tissue engineering: from tissue engineering to organ building.
Surgery,2005,137(1):1-7
|
CSCD被引
14
次
|
|
|
|
6.
Griffith L G. Tissue engineering-current challenges and expanding opportunities.
Science,2002,295(5557):1009-1014
|
CSCD被引
121
次
|
|
|
|
7.
Khademhosseini A. A decade of progress in tissue engineering.
Nature Protocols,2016,11(10):1775-1781
|
CSCD被引
20
次
|
|
|
|
8.
Lee K Y. Alginate:properties and biomedical applications.
Progress in Polymer Science,2012,37(1):106-126
|
CSCD被引
155
次
|
|
|
|
9.
Slaughter B V. Hydrogels in regenerative medicine.
Advanced Materials,2009,21(32/33):3307-3329
|
CSCD被引
62
次
|
|
|
|
10.
Zhao X. Photocrosslinkable gelatin hydrogel for epidermal tissue engineering.
Advanced Healthcare Materials,2016,5(1):108-118
|
CSCD被引
27
次
|
|
|
|
11.
Nguyen D. Cartilage tissue engineering by the 3Dbioprinting of iPS cells in a nanocellulose/alginate bioink.
Scientific Reports,2017,7(1):658
|
CSCD被引
12
次
|
|
|
|
12.
Yang X. Collagen-alginate as bioink for three-dimensional(3D)cell printing based cartilage tissue engineering.
Materials Science and Engineering:C,2018,83:195-201
|
CSCD被引
4
次
|
|
|
|
13.
Lopez-Marcial G R. Agarosebased hydrogels as suitable bioprinting materials for tissue engineering.
ACS Biomaterials Science & Engineering,2018,4(10):610-3616
|
CSCD被引
1
次
|
|
|
|
14.
张小林. 海藻酸盐医用材料的制备技术及应用现状.
棉纺织技术,2019,47(4):75-80
|
CSCD被引
3
次
|
|
|
|
15.
Johnson F A. Characterization of the block structure and molecular weight of sodium alginates.
Journal of Pharmacy and Pharmacology,1997,49(7):639-643
|
CSCD被引
2
次
|
|
|
|
16.
Venkatesan J. Alginate composites for bone tissue engineering:a review.
International Journal of Biological Macromolecules,2015,72:269-281
|
CSCD被引
15
次
|
|
|
|
17.
Wendt D. Bioreactor-based engineering of osteochondral grafts:from model systems to tissue manufacturing.
Journal of Bioscience and Bioengineering,2005,100(5):489-494
|
CSCD被引
7
次
|
|
|
|
18.
任利玲. 不同浓度海藻酸盐凝胶的力学特性及其对软骨细胞增殖能力的影响.
生物医学工程学杂志,2012,29(5):884-888
|
CSCD被引
3
次
|
|
|
|
19.
Kuo C K. Ionically crosslinked alginate hydrogels as scaffolds for tissue engineering:part 1.structure,gelation rate and mechanical properties.
Biomaterials,2001,22:511-521
|
CSCD被引
29
次
|
|
|
|
20.
Ouwerx C. Physicochemical properties and rheology of alginate gel beads formed with various divalent cations.
Polymer Gels and Networks,1998,6:393-408
|
CSCD被引
6
次
|
|
|
|
|