流体包裹体及石英LA-ICP-MS分析方法的建立及其在矿床学中的应用
In-situ analysis of major and trace elements in fluid inclusion and quartz: LA-ICP-MS method and applications to ore deposits
查看参考文献190篇
文摘
|
流体包裹体LA-ICP-MS(激光剥蚀-电感耦合等离子体质谱仪)分析具有高精度、低检测限、多元素同时微区原位检测的特点,因此在精细刻画成矿过程、深入揭示成矿机理方面具有传统方法无可比拟的优势。通过人工合成石英NaCl-H_2O-Rb-Cs和NaCl-KCl-CaCl_2-H_2O-Rb-Cs流体包裹体,使用NIST610为外标、显微测温NaCl等效盐度(电价平衡方法)为内标,建立了流体包裹体LA-ICP-MS分析方法。分析结果的相对误差在±16%以内,绝大部分在± 10%以内,相对标准偏差(RSD)小于7%。同时结合国际上推荐的石英标样,使用NIST610为外标、无内标法,建立了石英微量元素LA-ICP-MS分析方法。分析结果表明,石英中主要元素Li、Al和Ti的相对误差在±10%以内,相对标准偏差小于5%。利用建立的方法对鲁西早白垩世王家庄Cu-Mo矿开展了应用研究,结果显示该矿富气相包裹体更富Cu,而含子矿物包裹体富Mo,暗示Cu和Mo可能具有不同的搬运机制,Cu更倾向于气相,Mo则倾向于进入液相,结合流体沸腾现象的存在,这可能是导致该矿上铜下钼分带沉淀的重要因素。此外,从早期岩浆成因石英到成矿期热液石英以及成矿期后石英,微量元素具有明显的Ti降低而Al升高的趋势,暗示成矿元素Cu、Mo的沉淀可能同时还受到温度和流体酸碱度变化的控制。 |
其他语种文摘
|
LA-ICP-MS (Laser ablation-inductively coupled plasma-mass spectrometry) analysis of fluid inclusion is characterized by high precision,low detection limit and simultaneous measurement of multiple elements,which has remarkable advantages in revealing the specific mineralization processes. Based on using synthetic NaCl-H_2O-Rb-Cs and NaCl-KCl-CaCl_2 -H_2O-Rb-Cs fluid inclusions in quartz,a reliable analytical method of quantitatively determing major and trace elements in single fluid inclusion by LA-ICP-MS was established. In this method, external standard NIST610 and internal standard Na were used. The Na content was obtained from microthermometric measurement and calculated using the charge-balancing method. Analytical results show that the accuracy is within 16% and the precision is better than 7% RSD. In addition, combined with using the external standard NIST610 and a natural quartz standard,an analytical method for determing trace elements in quartz was also established. The accuracy for Li,Al and Ti is within 10% and the precision is better than 5% RSD. The above methods were applied to study the Cu and Mo mineralization mechanisms in the Wangjiazhuang Cu-Mo deposit in Luxi Block,eastern North China Craton. The results show that Cu is enriched in vapor-rich fluid inclusions, whereas Mo is concentrated in daughter mineral-bearing fluid inclusions, indicating that Cu was prone to be carried by vapor while Mo was likely carried by brine. This property is thus likely responsible for the depositional separation of Cu and Mo in the deposit. In addition, from the magmatic quartz to the ore-forming and then to the post-ore-forming quartz, the Ti contents decrease while the Al contents increase,suggesting the precipitation of Cu and Mo was also affected by the temperature and pH changes of the fluid. |
来源
|
岩石学报
,2017,33(10):3239-3262 【核心库】
|
关键词
|
流体包裹体
;
LA-ICP-MS
;
石英微量元素
;
Cu-Mo矿
;
王家庄
|
地址
|
1.
中国科学院地球化学研究所, 矿床地球化学国家重点实验室, 贵阳, 550081
2.
中国科学院大学地球科学学院, 中国科学院矿产资源研究重点实验室, 北京, 100049
3.
中国科学院地球化学研究所, 中国科学院地球内部物质高温高压重点实验室, 贵阳, 550081
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1000-0569 |
学科
|
地质学 |
基金
|
国家重点研发计划
;
国家自然科学基金项目
|
文献收藏号
|
CSCD:6094948
|
参考文献 共
190
共10页
|
1.
Adachi T. Titanium behavior in quartz during retrograde hydration: Occurrence of rutile exsolution and implications for metamorphic processes in the Sor Rondane Mountains, East Antarctica.
Polar Science,2010,3(4):222-234
|
CSCD被引
4
次
|
|
|
|
2.
Albrecht M. Quantification of trace element contents in frozen fluid inclusions by UV-fs-LA-ICP-MS analysis.
Journal of Analytical Atomic Spectrometry,2014,29(6):1034-1041
|
CSCD被引
8
次
|
|
|
|
3.
Allan M M. Validation of LA-ICP-MS fluid inclusion analysis with synthetic fluid inclusions.
American Mineralogist,2005,90(11/12):1767-1775
|
CSCD被引
12
次
|
|
|
|
4.
Allan M M. Tracking meteoric infiltration into a magmatic-hydrothermal system: A cathodoluminescence, oxygen isotope and trace element study of quartz from Mt. Leyshon, Australia.
Chemical Geology,2007,240(3/4):343-360
|
CSCD被引
7
次
|
|
|
|
5.
Audetat A. Formation of a magmatic-hydrothermal ore deposit: Insights with LA-ICP-MS analysis of fluid inclusions.
Science,1998,279(5359):2091-2094
|
CSCD被引
68
次
|
|
|
|
6.
Audetat A. Special paper: The composition of magmatic -hydrothermal fluids in barren and mineralized intrusions.
Economic Geology,2008,103(5):877-908
|
CSCD被引
52
次
|
|
|
|
7.
Audetat A. Characterisation of a natural quartz crystal as a reference material for microanalytical determination of Ti, Al, Li,Fe,Mn,Ga and Ge.
Geostandards and Geoanalytical Research,2015,39(2):171-184
|
CSCD被引
17
次
|
|
|
|
8.
Behr W M. Calibrating Ti concentrations in quartz for SIMS determinations using NIST silicate glasses and application to the TitaniQ geothermobarometer.
American Mineralogist,2011,96(7):1100-1106
|
CSCD被引
4
次
|
|
|
|
9.
Bennett J N. Analysis of fluid inclusions using a pulsed laser microprobe.
Mineralogical Magazine,1980,43(331):945-947
|
CSCD被引
2
次
|
|
|
|
10.
Bodnar R J. Revised equation and table for determining the freezing point depression of H_2O-NaCl solutions.
Geochimica et Cosmochimica Acta,1993,57(3):683-684
|
CSCD被引
453
次
|
|
|
|
11.
Boiron M C. Analysis of mono-atomic ions in individual fluid inclusions by laser-produced plasma emission spectroscopy.
Geochimica et Cosmochimica Acta,1991,55(3):917-923
|
CSCD被引
2
次
|
|
|
|
12.
Borisova A Y. Tin and associated metal and metalloid geochemistry by femtosecond LA-ICP-QMS microanalysis of pegmatite-leucogranite melt and fluid inclusions: New evidence for melt-melt-fluid immiscibility.
Mineralogical Magazine,2012,76(1):91-113
|
CSCD被引
8
次
|
|
|
|
13.
Bray J M. Spectroscopic distribution of minor elements in igneous rocks from Jamestown, Colorado.
Geological Society of America Bulletin,1942,53(5):765-814
|
CSCD被引
1
次
|
|
|
|
14.
Breiter K. Evolution of rare-metal granitic magmas documented by quartz chemistry.
European Journal of Mineralogy,2009,21(2):335-346
|
CSCD被引
9
次
|
|
|
|
15.
Breiter K. Trace element composition of quartz from the Variscan Altenberg-Teplice caldera (Krusne hory/Erzgebirge Mts,Czech Republic/Germany): Insights into the volcano-plutonic complex evolution.
Chemical Geology,2012,326/327:36-50
|
CSCD被引
4
次
|
|
|
|
16.
Breiter K. Behavior of trace elements in quartz from plutons of different geochemical signature: A case study from the Bohemian Massif, Czech Republic.
Lithos,2013,175/176:54-67
|
CSCD被引
10
次
|
|
|
|
17.
Bruhn F. Cathodoluminescence investigations and trace-element analysis of quartz by micro-PIXE: Implications for diagenetic and provenance studies in sandstone.
The Canadian Mineralogist,1996,34(6):1223-1232
|
CSCD被引
3
次
|
|
|
|
18.
Cai Y C. Silicate melt inclusions in clinopyroxene phenocrysts from mafic dikes in the eastern North China Craton: Constraints on melt evolution.
Journal of Asian Earth Sciences,2015,97:150-168
|
CSCD被引
3
次
|
|
|
|
19.
Cathles L M. How potassium silicate alteration suggests the formation of porphyry ore deposits begins with the nearly explosive but barren expulsion of large volumes of magmatic water.
Earth and Planetary Science Letters,2007,262(1/2):92-108
|
CSCD被引
5
次
|
|
|
|
20.
Chen L. Distinct lateral variation of lithospheric thickness in the northeastern North China Craton.
Earth and Planetary Science Letters,2008,267(1/2):56-68
|
CSCD被引
102
次
|
|
|
|
|