帮助 关于我们

返回检索结果

基于模式优选的21世纪中国气候变化情景集合预估
Ensemble projection of climate change scenarios of China in the 21st century based on the preferred climate models

查看参考文献43篇

张学珍 1   李侠祥 2   徐新创 3 *   张丽娟 2  
文摘 未来气候变化情景预估是制定气候变化应对和适应策略的科学基础。本文利用参与耦合模式比较计划第五阶段(CMIP5)的30个气候模式的模拟数据,通过评估各模式对历史气候变化的模拟能力,筛选出模拟区域气候变化的最优模式组合,进而建立偏最小二乘回归(PLS)集合预估模型,据此利用最优模式模拟结果预估区域温度和降水变化情景。通过与历史数据的对比,研究发现本文基于最优模式建立的PLS集合预估模型不仅优于传统的多模式集合平均,而且也优于利用全部模式建立的PLS集合预估模型,体现了模式优选过程的重要性。本文基于优选模式的PLS集合预估模型预估结果表明:①21世纪各区域温度将持续上升,且冬半年升温速率总体大于夏半年,北方地区升温速率总体高于南方地区;RCP 4.5排放情景下温度上升先快后慢,转折点出现在21世纪中期,RCP 8.5排放情景下,呈持续增加趋势,至21世纪末的升温幅度约为RCP4.5情景的2倍。②21世纪各区降水变化均呈显著增加趋势,并表现出高排放情景大于低排放情景,少雨区大于多雨区的特征,但是降水增加过程伴有明显的年代际波动。对比发现,传统的等权重集合平均全部模式(EMC)方法预估的中国夏季变暖速率高于冬季,且降水基本呈线性增加,有悖于全球变暖的基本特征及中国降水具有鲜明的年代际变化特征的基本认识。因而,本文预估的温度和降水变化特征均更符合中国气候变化的基本规律。
其他语种文摘 Projection of future climate change scenarios provides the scientific basis for addressing climate change and for proposing strategies of adapting climate change. This study used the simulation data of 30 climate models, which were evolved in the Coupled Model Intercomparison Project Phase 5 (CMIP5). Through evaluating the performance of each model on simulating the historical climate change, the preferred climate models were selected. Then, using the outputs of preferred climate models as independent variables and using ground measurements as dependent variables, the partial least squares regression (PLS) models were constructed for temperature and precipitation, respectively, of each region of China. By analyzing the ensemble predictions of regional temperature and precipitation changes, we found that the PLS ensemble mean of preferred climate models is closer to the ground measurements than the PLS ensemble mean of all of the climate models and the traditionally arithmetic average-based ensemble mean. The PLS ensemble projections of preferred climate model showed that climate warming would generally continue during the 21st century, which would be stronger in the cold half-year and in the northern regions than that in the warm half-year and in the southern regions. Under the scenario of RCP 4.5,the climate warming would be stronger in the first half of the 21st century and weaker in the second half. Under the scenario of RCP 8.5, the climate warming would keep nearly constant rate and, by the end of 21st century, the temperature would rise by two folds of that under the scenario of RCP 4.5. The increasing trend of precipitation would be stronger under the scenario of RCP 8.5 than that under the scenario of RCP 4.5 and would be stronger in the dry regions than that in the rainy regions with decadal oscillations. Finally, the equal weighting ensemble projections of all of the climate models exhibit that climate warming would be stronger in summer than in winter and that precipitation would increase linearly without decadal oscillations. These findings are opposite to the primary characters of climate changes that climate warming is stronger in winter than in summer and precipitation has strong inter-decadal variability. Thereby, the PSL-based ensemble mean of preferred climate model may provide reasonable projections of future temperature and precipitation changes.
来源 地理学报 ,2017,72(9):1555-1568 【核心库】
DOI 10.11821/dlxb201709002
关键词 CMIP5 ; 中国气候变化 ; 模式优选 ; 多模式集合 ; 情景预估
地址

1. 中国科学院地理科学与资源研究所, 中国科学院陆地表层格局与模拟重点实验室, 北京, 100101  

2. 哈尔滨师范大学, 黑龙江省普通高等学校地理环境遥感监测重点实验室, 哈尔滨, 150025  

3. 湖北科技学院资源环境科学与工程学院, 咸宁, 437100

语种 中文
文献类型 研究性论文
ISSN 0375-5444
学科 大气科学(气象学)
基金 国家重点研发计划项目 ;  国家自然科学基金项目 ;  中国科学院地理科学与资源研究所杰出青年人才基金项目 ;  中国科学院青年创新促进会项目 ;  湖北省教育厅人文社科重点基金项目
文献收藏号 CSCD:6068302

参考文献 共 43 共3页

1.  IPCC. Climate Change 2013: The physical science basis. Final Draft Underlying Scientific-Technical Assessment,2012:5 CSCD被引 2    
2.  王澄海. CMIP研究计划的进展及其在中国地区的检验和应用前景. 地球科学进展,2009,24(5):461-468 CSCD被引 20    
3.  Guo Y. Surface air temperature simulations over China with CMIP5 and CMIP3. Advances in Climate Change Research,2013,4(3):145-152 CSCD被引 18    
4.  Qu X. Consistent responses of East Asian summer mean rainfall to global warming in CMIP5 simulations. Theoretical and Applied Climatology,2014,117(1):123-131 CSCD被引 11    
5.  朱献. CMIP5耦合模式对北半球3-4月积雪面积的历史模拟和未来预估. 气候变化研究进展,2013,9(3):173-180 CSCD被引 9    
6.  Elguindi N. Assessment of CMIP5 global model simulations and climate change projections for the 21st century using a modified Thornthwaite climate classification. Climatic Change,2014,122(4):523-538 CSCD被引 15    
7.  周秀华. 基于CMIP5资料的云南及周边地区未来50年气候预估. 气候与环境研究,2014,19(5):601-613 CSCD被引 15    
8.  吴佳. 中国平均降水和极端降水对气候变暖的响应:CMIP5模式模拟评估和预估. 地球物理学报,2015,58(9):3048-3060 CSCD被引 41    
9.  李恺霖. CMIP5多模式对阿留申低压气候特征的模拟检验与预估. 气候与环境研究,2016,21(5):533-546 CSCD被引 2    
10.  Chen L. Surface air temperature changes over the twentieth and twenty- first centuries in China Simulated by 20 CMIP5 models. Journal of Climate,2014,27(11):3920-3937 CSCD被引 22    
11.  刘彩红. RCPs情景下未来青海高原气候变化趋势预估. 中国沙漠,2015,35(5):1353-1361 CSCD被引 12    
12.  姚遥. 8个CMIP5模式对中国极端气温的模拟和预估. 气候变化研究进展,2012,8(4):250-256 CSCD被引 42    
13.  Liu Y. An analysis of historical and future temperature fluctuations over China based on CMIP5 simulations. Advances in Atmospheric Sciences,2014,31(2):457-467 CSCD被引 3    
14.  智协飞. CMIP5多模式资料中气温的BMA预测方法研究. 气象科学,2015,35(4):405-412 CSCD被引 9    
15.  刘河. 多模式集合对中国气温的模拟效果及未来30年中国气温变化预估. 高原气象,2011,30(2):363-370 CSCD被引 1    
16.  Parry M L. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Encyclopedia of Language & Linguistics,2007,12(1):171-175 CSCD被引 7    
17.  Jiang D B. Ensemble projection of 1-3 degrees C warming in China. Chinese Science Bulletin,2009,54(18):3326-3334 CSCD被引 21    
18.  Huang P. A multi-model ensemble pattern regression method to correct the tropical Pacific SST change patterns under global warming. Journal of Climate,2015,28(12):4706-4723 CSCD被引 10    
19.  Zhang X. A new statistical precipitation downscaling method with Bayesian model averaging: A case study in China. Climate Dynamics,2015,45(9):1-15 CSCD被引 1    
20.  陈红. CMIP5气候模式对中国东部夏季降水年代际变化的模拟性能评估. 气候与环境研究,2014,19(6):773-786 CSCD被引 13    
引证文献 19

1 李晓菲 21世纪开都-孔雀河流域未来气候变化情景预估 干旱区研究,2019,36(3):556-566
CSCD被引 4

2 李晓菲 CMIP5模式对西北干旱区典型流域气温模拟能力评估——以开都-孔雀河为例 资源科学,2019,41(6):1141-1153
CSCD被引 10

显示所有19篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号