帮助 关于我们

返回检索结果

脉冲参数对脉冲介质阻挡放电臭氧产生影响的数值模拟
Numerical Simulation for the Effects of Pulse Power Parameters on Ozone Generation by Pulsed Dielectric Barrier Discharge

查看参考文献35篇

李鸣 1   彭邦发 2   魏林生 3 *   章亚芳 3  
文摘 在脉冲介质阻挡放电产生臭氧的过程中,脉冲参数至关重要。为研究脉冲参数对其流光传播速度和臭氧分子浓度的影响,构建了1个由流体动力学模型和包含11种粒子、29个反应的反应模型组成的准2维动力学模型并进行了数值模拟。模拟结果表明:流光传播速度和臭氧分子浓度均随脉冲峰值电压的增大而增大,随脉冲上升时间的减小而增大,在模拟工况所得流光速度范围为4.2×10~4~3.57×10~5 m/s;脉冲宽度的变化对流光传播速度与臭氧分子浓度基本无影响,但减小脉冲宽度有利于提高臭氧产率;随着脉冲上升率的增大,在流光出现后并经历相同时间时对应的电场强度更大,流光的传播速度随之加快,同时臭氧分子浓度也由于氧原子产生速率的增大而增大。该研究可以为脉冲电源的选择和优化提供参考。
其他语种文摘 The parameters of pulse power play a vital role in ozone generation by pulsed dielectric barrier discharge. To investigate effects of pulse power parameters on streamer propagation velocity and ozone density, a qusi-two-dimensional dynamic model is developed. The numerical model consists of hydrodynamic model and chemical model including 11 species and 29 reactions. The numerical results show that both streamer propagation velocity and ozone density increase with the increase of pulse peak voltage and the decrease of pulse rise time. The streamer propagation velocity varies from 4.20×10~4 m/s to 3.57×10~5 m/s. Pulse width hardly has impact on streamer propagation velocity and ozone density, but decreasing pulse width is favorable for the improvement of ozone yield. With the increase of pulse rise rate, the change of electric field strength becomes larger at the same time interval and the electric field strength is also larger at the same time after the streamer emerging. So streamer propagation velocity increases with increasing the pulse rise rate. Meanwhile, ozone density increases because the production rate of O radial increases. This work will provide a reference for choice and optimum of pulse power.
来源 高电压技术 ,2016,42(8):2659-2667 【核心库】
DOI 10.13336/j.1003-6520.hve.20160812038
关键词 脉冲参数 ; 流光传播 ; 臭氧产生 ; 脉冲介质阻挡放电 ; 平板型 ; 动力学 ; 数值模拟
地址

1. 南昌大学信息工程学院, 南昌, 330031  

2. 南昌大学机电工程学院, 南昌, 330031  

3. 南昌大学资源环境与化工学院, 南昌, 330031

语种 中文
文献类型 研究性论文
ISSN 1003-6520
学科 物理学
基金 国家自然科学基金 ;  江西省青年科学家井冈之星培养对象计划项目 ;  江西省自然科学基金 ;  江西省高等学校科技落地计划
文献收藏号 CSCD:5795621

参考文献 共 35 共2页

1.  Ono R. Formation and structure of primary and secondary streamers in positive pulsed corona discharge-effect of oxygen concentration and applied voltage. Journal of Physics D: Applied Physics,2003,36(16):1952-1958 被引 10    
2.  Van Veldhuizen E M. Pulsed positive corona streamer propagation and branching. Journal of Physics D: Applied Physics,2002,35(17):2169-2179 被引 28    
3.  Winands G J J. Temporal development and chemical efficiency of positive streamers in a large scale wire-plate reactor as a function of voltage waveform parameters. Journal of Physics D: Applied Physics,2006,39(14):3010-3017 被引 2    
4.  Tardiveau P. Tracking an individual streamer branch among others in a pulsed induced discharge. Journal of Physics D: Applied Physics,2002,35(21):2823-2829 被引 9    
5.  Briels T M P. Experiments on the diameter of positive streamers in air. Proceedings of the 27~(th) International Conference on Phenomena in Ionised Gases,2005 被引 1    
6.  刘典. 短空气间隙放电流注分叉特性实验研究. 高电压技术,2015,41(1):282-286 被引 7    
7.  Wang D Y. Pulsed discharge induced by nanosecond pulsed power in atmospheric air. IEEE Transactions on Plasma Science,2010,38(10):2746-2751 被引 3    
8.  Yagi I. Streamer propagation of nanosecond pulse discharge with various rise times. IEEE Transactions on Plasma Science,2011,39(11):2232-2233 被引 2    
9.  Clevis T T J. Inception and propagation of positive streamers in high-purity nitrogen: effects of the voltage rise rate. Journal of Physics D: Applied Physics,2013,46(4):045202 被引 4    
10.  Ono R. Effect of pulse width on the production of radicals and excited species in a pulsed positive corona discharge. Journal of Physics D: Applied Physics,2011,44(48):485201 被引 4    
11.  闫克平. 高电压环境工程应用研究关键技术问题分析及展望. 高电压技术,2015,41(8):2528-2544 被引 72    
12.  Komuro A. Effects of pulse voltage rise rate on velocity, diameter and radical production of an atmospheric-pressure streamer discharge. Plasma Sources Science and Technology,2013,22(4):045002 被引 7    
13.  Fujiwara M. Short-pulse discharge for simultaneous pursuit of energy and volume-efficient NO_x removal. Japanese Journal of Applied Physics.A,2006,45(2):948-950 被引 1    
14.  Namihira T. Improvement of NO_x removal efficiency using short-width pulsed power. IEEE Transactions on Plasma Science,2000,28(2):434-442 被引 4    
15.  Ono R. Measurement of gas temperature and OH density in the afterglow of pulsed positive corona discharge. Journal of Physics D: Applied Physics,2008,41(3):035204 被引 9    
16.  徐双艳. 二维对称结构纳秒脉冲介质阻挡放电数值模拟. 高电压技术,2015,41(6):2100-2107 被引 9    
17.  Wei L S. Experimental and theoretical study of ozone generation in pulsed positive dielectric barrier discharge. Vacuum,2014,104:61-64 被引 13    
18.  Baldus S. Atomic oxygen dynamics in an air dielectric barrier discharge: a combined diagnostic and modeling approach. Journal of Physics D: Applied Physics,2015,48(27):275203 被引 2    
19.  Wei L S. A numerical study of species and electric field distributions in pulsed DBD in oxygen for ozone generation. Vacuum,2016,125:123-132 被引 6    
20.  Mennad B. Theoretical investigation of ozone production in negative corona discharge. Current Applied Physics,2010,10(6):1391-1401 被引 5    
引证文献 6

1 王晓龙 大气压氩氧脉冲介质阻挡放电等离子体中长生存时间活性氧粒子的演化机理 高电压技术,2018,44(3):904-913
被引 2

2 王泽众 基于光电倍增管的流注发展速度测量 高电压技术,2018,44(3):920-925
被引 9

显示所有6篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号