一种卡尔曼滤波与粒子滤波相结合的非线性滤波算法
A Nonlinear Filtering Algorithm Combining the Kalman Filter and the Particle Filter
查看参考文献14篇
文摘
|
提出一种基于卡尔曼滤波与粒子滤波的非线性滤波算法.这种方法对于状态变量服从线性变化而观测方程为非线性的动态系统模型具有显著的效果.首先使用粒子滤波对状态变量进行初估计,然后对估计结果进行卡尔曼滤波,另外推导出该系统模型下状态变量估计误差的克拉美劳下界.通过计算复杂度分析及仿真实验验证,表明新方法与标准粒子滤波算法复杂度相当,但参数估计精度要高于标准粒子滤波以及扩展卡尔曼滤波算法,估计误差甚至要低于系统模型的克拉美劳下界. |
其他语种文摘
|
A nonlinear filtering algorithm is proposed based on the Kalman filter and the particle filter.The method can provide significant performance for dynamic nonlinear system which is consist of linear state equation and nonlinear measurement equation.Firstly,the particle filter is utilized for initial estimation of the state variables,and then the Kalman filter is performed.The Cramer-Rao Bound is derived for the nonlinear model.Computation complexity analysis and numerical simulations demonstrate that the proposed algorithm has the same complexity as thestandard particle filter,but the estimation accuracy is higher than the standard particle filter and the extended Kalman filter.The estimation error is even lower than the Cramer-Rao Bound of the system model. |
来源
|
电子学报
,2013,41(1):148-152 【核心库】
|
DOI
|
10.3969/j.issn.0372-2112.2013.01.026
|
关键词
|
非线性滤波
;
粒子滤波
;
卡尔曼滤波
;
克拉美劳下界
;
计算复杂度
|
地址
|
1.
大连理工大学电子信息与电气工程学部, 辽宁, 大连, 116024
2.
国家无线电监测中心, 北京, 100037
3.
北京邮电大学信息与通信工程学院, 北京, 100876
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0372-2112 |
学科
|
电子技术、通信技术 |
基金
|
国家自然科学基金
|
文献收藏号
|
CSCD:4755570
|
参考文献 共
14
共1页
|
1.
Daum F. Nonlinear filters beyond the Kalman filter.
IEEE A&E Systems Magazine,2005,20(8):57-69
|
CSCD被引
57
次
|
|
|
|
2.
刘先省. 基于粒子优化的多模型粒子滤波算法.
电子学报,2010,38(2):301-306
|
CSCD被引
13
次
|
|
|
|
3.
Kim J. Comparison between nonlinear filtering techniques for spiraling ballistic missile state estimation.
IEEE Transactions on Aerospace and Electronic Systems,2012,48(1):313-328
|
CSCD被引
26
次
|
|
|
|
4.
Kalman R E. A new approach to linear filtering and prediction problems.
Transactions of the AMSE Journal of Basic Engineering,1960,82:35-45
|
CSCD被引
847
次
|
|
|
|
5.
Schmidt S. "Applications of State-Space Methods to Navigation Problems".
Advances in Control Systems,1966:294-340
|
CSCD被引
1
次
|
|
|
|
6.
刘义. 高精度惯导速度信息辅助的弹目相对运动模型构建方法.
电子学报,2011,39(9):2207-2211
|
CSCD被引
4
次
|
|
|
|
7.
Julier S J. Unscented filtering and nonlinear estimation.
Proceedings of IEEE,2004,92(3):401-422
|
CSCD被引
767
次
|
|
|
|
8.
Ghirmai T. A sequential Monte Carlo method for adaptive blind timeing estimation and data detection.
IEEE Transactions on Signal Processing,2005,53(8):2855-2865
|
CSCD被引
15
次
|
|
|
|
9.
吴孙勇. 基于粒子滤波的宽带信号波达方向估计.
电子学报,2011,39(6):1353-1357
|
CSCD被引
3
次
|
|
|
|
10.
Scharcanski J. A particle-filtering approachfor vehicular tracking adaptive to occlusions.
IEEE Transactions on Vehicular Technology,2011,60(2):381-389
|
CSCD被引
8
次
|
|
|
|
11.
Kotecha J H. Gaussian particle filtering.
IEEE Transactions on Signal Processing,2003,51(10):2592-2601
|
CSCD被引
147
次
|
|
|
|
12.
Zhan R. Modified unscented particle filter for nonlinear Bayesian tracking.
Journal of Systems Engineering and Electronics,2008,19(1):7-14
|
CSCD被引
4
次
|
|
|
|
13.
Schon T. Marginalized particle filters for mixed linear/nonlinear state-space models.
IEEE Transactions on Signal Processing,2005,53(7):2279-2289
|
CSCD被引
46
次
|
|
|
|
14.
Zuo L. Conditional posterior Cramer-Rao lower bounds for nonlinear sequential Bayesian estimation.
IEEE Transactions on Signal Processing,2011,59(1):1-14
|
CSCD被引
17
次
|
|
|
|
|