帮助 关于我们

返回检索结果

高温高压下微斜长石的阻抗谱实验研究
Experimental Study on Impedance Spectra of Microcline under High Temperature and High Pressure

查看参考文献29篇

胡海英 1   李和平 2 *   代立东 3   朱成明 2  
文摘 在1.03.0 GPa,673973 K和10-1106Hz条件下,利用交流阻抗谱实验技术,首次对微斜长石[(K0.73Na0.16Ca0.09)0.98AlTi0.01Si2.99O8]电导率进行原位测量.实验结果表明:样品的复阻抗的模和相角对频率有很强的依赖性;样品电导率随着温度升高而增大,电导率的对数和温度的倒数之间关系符合Arrhenius线性关系;微斜长石电导率随着压力升高而降低,而活化焓随之增加;离子导电机制对高温高压下微斜长石的导电行为给予了合理的解释
其他语种文摘 Conductivity of microcline [(K0.73Na0.16Ca0.09)0.98AlTi0.01Si2.99O8] was firstly measured by AC impedance spectroscopy method under conditions of 1.0-3.0 GPa and 673-973 K and the frequency range from 10-1 to 106 Hz.The experimental results indicate that the modulus and phase angle of complex impedance spectra of microcline strongly depend on frequency. Electrical conductivity of samples increases as the temperature increasing, and the logarithm of the electrical conductivity and the reciprocal temperature fit the linear Arrhenius relation. The electrical conductivity of microcline decreases as pressure increasing, while the activation enthalpy slightly increases. The conduction mechanism in microcline is ionic conduction, with alkali ions moving in channels
来源 人工晶体学报 ,2011,40(1):284-289 【核心库】
关键词 微斜长石 ; 高温高压 ; 电导率 ; 导电机制
地址

1. 中国科学院研究生院, 中国科学院地球深部物质与流体作用地球化学实验室, 贵阳, 550002  

2. 中国科学院地球化学研究所, 中国科学院地球深部物质与流体作用地球化学实验室, 贵阳, 550002  

3. Department of Earth and Planetary Sciences, Tokyo Institute of Technology, 中国科学院地球深部物质与流体作用地球化学实验室, 贵阳, 550002

语种 中文
文献类型 研究性论文
ISSN 1000-985X
学科 物理学
基金 中国科学院知识创新工程重要方向项目 ;  国家自然科学基金
文献收藏号 CSCD:4143686

参考文献 共 29 共2页

1.  Hood L L. The Deep Lunar Electrical Conductivity Profile: Structural and Thermal Inferences. Journal of Geophysical Research,1982,87(B7):5311-5326 CSCD被引 5    
2.  Yoshino T. Laboratory Electrical Conductivity Measurement of Mantle Minerals. Surveys in Geophysics,2010,31:163-206 CSCD被引 28    
3.  Piwinskii A J. Feldspar Electrical Conductivity and the Lunar Interior. Proceedings Lunar Science Conference,1975,6:2899-2907 CSCD被引 1    
4.  Piwinskii A J. High Temperature Electrical Conductivity of Albite. Geophysical Research Letters,1974,1(5):209-211 CSCD被引 4    
5.  Guseinov A A. Electrical Conductivity of Alkaline Feldspars at High Temperatures. Izestiya, Physics of the Solid Earth,2002,38(6):520-523 CSCD被引 4    
6.  Bakhterev V V. High Temperature Electric Conductivity of Some Feldspars. Doklady Earth Sciences,2008,420(4):554-557 CSCD被引 3    
7.  Goldsmith J. The Microcline-Sanidine Stability Relations. Geochimica et Cosmochimica Acta,1954,5:14 CSCD被引 1    
8.  Dai L D. Electrical Conductivity of Dry Polycrystalline Olivine Compacts at High Temperatures and High Pressures. Mineralogical Magazine,2010,74(5):849-857 CSCD被引 3    
9.  Dai'L D. Experimental Study of Grain Boundary Electrical Conductivities of Dry Synthetic Peridotite under Hightemperature, High-pressure, and Different Oxygen Fugacity Conditions. Journal of Geophysical Research,2008,113:B12211 CSCD被引 1    
10.  Dai L D. Situ Control of Different Oxygen Fugacity Experimental Study on the Electrical Conductivity of Lherzolite at High Temperature and High Pressure. Journal of Physics and Chemistry of Solids,2008,69(1):101-110 CSCD被引 9    
11.  Li H P. Situ Control of Oxygen Fugacity at High Temperature and High Pressure. Journal of Geophysical Research,1999,104:29439-29451 CSCD被引 4    
12.  Tyburczy J A. Electrical Properties of Minerals and Melts. Mineral Physics and Crystallography,1995:185-208 CSCD被引 1    
13.  Freund F. On the Electrical Conductivity Structure of the Stable Continental Crust. Journal of Geodynamics,2003,35:353-388 CSCD被引 10    
14.  Guseinov A A. Electrical Conductivity of Phlogopites at High Temperatures. Izvestiya Physics of the Solid Earth,2005,41:670-679 CSCD被引 2    
15.  Nover G. Electrical Properties of Crustal and Mantle Rocks-A Review of Laboratory Measurements and their Explanation. Surveys in Geophysics,2005,26:593-651 CSCD被引 22    
16.  Jones R L. Complex Impedance Spectroscopy and Ionic Transport Properties of Natural Leucite, K0.90 Na0.08[Al0.98 Si2.02] 06, as a Function of Temperature and Pressure. Mineralogical Magazine,2010,74:507-519 CSCD被引 1    
17.  Xu Y S. Electrical Conductivity of Olivine, Wadsleyite, and Ringwoodite under Upper-mantle Conditions. Science,1998,280(5368):1415-1418 CSCD被引 35    
18.  Dai L D. Electrical Conductivity of Pyrope-rich Garnet at High Temperature and High Pressure. Physics of the Earth and Planetary Interior,2009,176:83-88 CSCD被引 17    
19.  Barsoukov E. Impedance Spectroscopy Theory, Experiment, and Applications . Second Edition,2005:17-89 CSCD被引 1    
20.  Roberts J J. Impedance Spectroscopy of Single and Polycrystalline Olivine: Evidence for Grain Boundary Transport. Physics and Chemistry of Minerals,1993,20:19-26 CSCD被引 15    
引证文献 2

1 蒋建军 地球内部物质电学性质原位测量的影响因素和导电机制——以地壳矿物为例 地球科学进展,2013,28(4):455-466
CSCD被引 5

2 蒋建军 高温高压下天然峨眉山玄武岩的阻抗谱实验研究 人工晶体学报,2013,42(5):968-975
CSCD被引 2

显示所有2篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号