高温高压下微斜长石的阻抗谱实验研究
Experimental Study on Impedance Spectra of Microcline under High Temperature and High Pressure
查看参考文献29篇
文摘
|
在1.03.0 GPa,673973 K和10-1106Hz条件下,利用交流阻抗谱实验技术,首次对微斜长石[(K0.73Na0.16Ca0.09)0.98AlTi0.01Si2.99O8]电导率进行原位测量.实验结果表明:样品的复阻抗的模和相角对频率有很强的依赖性;样品电导率随着温度升高而增大,电导率的对数和温度的倒数之间关系符合Arrhenius线性关系;微斜长石电导率随着压力升高而降低,而活化焓随之增加;离子导电机制对高温高压下微斜长石的导电行为给予了合理的解释 |
其他语种文摘
|
Conductivity of microcline [(K0.73Na0.16Ca0.09)0.98AlTi0.01Si2.99O8] was firstly measured by AC impedance spectroscopy method under conditions of 1.0-3.0 GPa and 673-973 K and the frequency range from 10-1 to 106 Hz.The experimental results indicate that the modulus and phase angle of complex impedance spectra of microcline strongly depend on frequency. Electrical conductivity of samples increases as the temperature increasing, and the logarithm of the electrical conductivity and the reciprocal temperature fit the linear Arrhenius relation. The electrical conductivity of microcline decreases as pressure increasing, while the activation enthalpy slightly increases. The conduction mechanism in microcline is ionic conduction, with alkali ions moving in channels |
来源
|
人工晶体学报
,2011,40(1):284-289 【核心库】
|
关键词
|
微斜长石
;
高温高压
;
电导率
;
导电机制
|
地址
|
1.
中国科学院研究生院, 中国科学院地球深部物质与流体作用地球化学实验室, 贵阳, 550002
2.
中国科学院地球化学研究所, 中国科学院地球深部物质与流体作用地球化学实验室, 贵阳, 550002
3.
Department of Earth and Planetary Sciences, Tokyo Institute of Technology, 中国科学院地球深部物质与流体作用地球化学实验室, 贵阳, 550002
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1000-985X |
学科
|
物理学 |
基金
|
中国科学院知识创新工程重要方向项目
;
国家自然科学基金
|
文献收藏号
|
CSCD:4143686
|
参考文献 共
29
共2页
|
1.
Hood L L. The Deep Lunar Electrical Conductivity Profile: Structural and Thermal Inferences.
Journal of Geophysical Research,1982,87(B7):5311-5326
|
CSCD被引
5
次
|
|
|
|
2.
Yoshino T. Laboratory Electrical Conductivity Measurement of Mantle Minerals.
Surveys in Geophysics,2010,31:163-206
|
CSCD被引
28
次
|
|
|
|
3.
Piwinskii A J. Feldspar Electrical Conductivity and the Lunar Interior.
Proceedings Lunar Science Conference,1975,6:2899-2907
|
CSCD被引
1
次
|
|
|
|
4.
Piwinskii A J. High Temperature Electrical Conductivity of Albite.
Geophysical Research Letters,1974,1(5):209-211
|
CSCD被引
4
次
|
|
|
|
5.
Guseinov A A. Electrical Conductivity of Alkaline Feldspars at High Temperatures.
Izestiya, Physics of the Solid Earth,2002,38(6):520-523
|
CSCD被引
4
次
|
|
|
|
6.
Bakhterev V V. High Temperature Electric Conductivity of Some Feldspars.
Doklady Earth Sciences,2008,420(4):554-557
|
CSCD被引
3
次
|
|
|
|
7.
Goldsmith J. The Microcline-Sanidine Stability Relations.
Geochimica et Cosmochimica Acta,1954,5:14
|
CSCD被引
1
次
|
|
|
|
8.
Dai L D. Electrical Conductivity of Dry Polycrystalline Olivine Compacts at High Temperatures and High Pressures.
Mineralogical Magazine,2010,74(5):849-857
|
CSCD被引
3
次
|
|
|
|
9.
Dai'L D. Experimental Study of Grain Boundary Electrical Conductivities of Dry Synthetic Peridotite under Hightemperature, High-pressure, and Different Oxygen Fugacity Conditions.
Journal of Geophysical Research,2008,113:B12211
|
CSCD被引
1
次
|
|
|
|
10.
Dai L D. Situ Control of Different Oxygen Fugacity Experimental Study on the Electrical Conductivity of Lherzolite at High Temperature and High Pressure.
Journal of Physics and Chemistry of Solids,2008,69(1):101-110
|
CSCD被引
9
次
|
|
|
|
11.
Li H P. Situ Control of Oxygen Fugacity at High Temperature and High Pressure.
Journal of Geophysical Research,1999,104:29439-29451
|
CSCD被引
4
次
|
|
|
|
12.
Tyburczy J A. Electrical Properties of Minerals and Melts.
Mineral Physics and Crystallography,1995:185-208
|
CSCD被引
1
次
|
|
|
|
13.
Freund F. On the Electrical Conductivity Structure of the Stable Continental Crust.
Journal of Geodynamics,2003,35:353-388
|
CSCD被引
10
次
|
|
|
|
14.
Guseinov A A. Electrical Conductivity of Phlogopites at High Temperatures.
Izvestiya Physics of the Solid Earth,2005,41:670-679
|
CSCD被引
2
次
|
|
|
|
15.
Nover G. Electrical Properties of Crustal and Mantle Rocks-A Review of Laboratory Measurements and their Explanation.
Surveys in Geophysics,2005,26:593-651
|
CSCD被引
22
次
|
|
|
|
16.
Jones R L. Complex Impedance Spectroscopy and Ionic Transport Properties of Natural Leucite, K0.90 Na0.08[Al0.98 Si2.02] 06, as a Function of Temperature and Pressure.
Mineralogical Magazine,2010,74:507-519
|
CSCD被引
1
次
|
|
|
|
17.
Xu Y S. Electrical Conductivity of Olivine, Wadsleyite, and Ringwoodite under Upper-mantle Conditions.
Science,1998,280(5368):1415-1418
|
CSCD被引
35
次
|
|
|
|
18.
Dai L D. Electrical Conductivity of Pyrope-rich Garnet at High Temperature and High Pressure.
Physics of the Earth and Planetary Interior,2009,176:83-88
|
CSCD被引
17
次
|
|
|
|
19.
Barsoukov E.
Impedance Spectroscopy Theory, Experiment, and Applications . Second Edition,2005:17-89
|
CSCD被引
1
次
|
|
|
|
20.
Roberts J J. Impedance Spectroscopy of Single and Polycrystalline Olivine: Evidence for Grain Boundary Transport.
Physics and Chemistry of Minerals,1993,20:19-26
|
CSCD被引
15
次
|
|
|
|
|