TiVNbTa难熔高熵合金的吸放氢动力学
Hydrogen absorption-desorption kinetics of TiVNbTa refractory high-entropy alloy
查看参考文献21篇
文摘
|
通过真空电磁感应悬浮熔炼技术制备TiVNbTa难熔高熵合金试样,采用多通道储氢性能测试仪测试合金的吸放氢性能,并研究该合金的吸(放)氢行为及其动力学机制。结果表明:单相BCC结构的TiVNbTa难熔高熵合金吸氢后生成TiH_(1.971),Nb_(0.696)V_(0.304)H和Nb_(0.498)V_(0.502)H_2 3种氢化物新相。氢化高熵合金粉末在519,593 K和640 K分别发生氢化物的分解反应,放氢后恢复单相BCC结构,因此TiVNbTa合金的吸氢反应属于可逆反应。该合金在423~723 K温度区间具有较高的吸(放)氢速率,其吸(放)氢动力学模型分别符合Johnson-Mehl-Avrami(JMA)方程和二级速率方程,吸(放)氢的表观活化能Ea分别为-21.87 J/mol和8.67 J/mol。 |
其他语种文摘
|
TiVNbTa refractory high-entropy alloy was prepared by vacuum electromagnetic levitation melting technology. The hydrogen absorption and desorption properties of the alloy were tested by multichannel hydrogen storage tester, the hydrogen absorption-desorption behavior and corresponding kinetic mechanisms were investigated. The results show that BCC single-phase structure in the alloy is transformed into three new phases including TiH_(1.971), Nb_(0.696)V_(0.304)H and Nb_(0.498)V_(0.502)H_2 after the hydrogen absorption process. The hydrides in the hydrogenated high-entropy alloy decompose at 519, 593 K and 640 K, respectively and change to BCC phase again after hydrogen desorption process. Therefore, the hydrogenation reaction is reversible. The alloy exhibits high hydrogenation (dehydrogenation) rates at 423- 723 K. The kinetics of hydrogen absorption and desorption can be described by Johnson-Mehl-Avrami (JMA) model and second-order rate model, respectively. The apparent activation energies Ea of hydrogen absorption and desorption are -21.87 J/mol and 8.67 J/mol, respectively. |
来源
|
材料工程
,2024,52(1):101-107 【核心库】
|
DOI
|
10.11868/j.issn.1001-4381.2022.000592
|
关键词
|
难熔高熵合金
;
吸放氢动力学
;
表观活化能
;
可逆反应
|
地址
|
1.
广东省金属新材料制备与成形重点实验室, 广东省金属新材料制备与成形重点实验室, 广州, 510640
2.
华南理工大学机械与汽车工程学院, 广州, 510640
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1001-4381 |
学科
|
金属学与金属工艺 |
基金
|
广东省自然科学基金面上项目
;
广州市基础研究计划基础与应用基础研究项目
|
文献收藏号
|
CSCD:7652194
|
参考文献 共
21
共2页
|
1.
Faye O. A critical review on the current technologies for the generation,storage,and transportation of hydrogen.
International Journal of Hydrogen Energy,2022,47:13771-13802
|
CSCD被引
16
次
|
|
|
|
2.
高金良. 氢储存技术及其储能应用研究进展.
金属功能材料,2016,23(1):1-11
|
CSCD被引
9
次
|
|
|
|
3.
Abe J O. Hydrogen energy, economy and storage:review and recommendation.
International Journal of Hydrogen Energy,2019,44(29):15072-15086
|
CSCD被引
116
次
|
|
|
|
4.
Tsai M H. High-entropy alloys:a critical review.
Materials Research Letters,2014,2(3):107-123
|
CSCD被引
215
次
|
|
|
|
5.
Miracle D B. A critical review of high entropy alloys and related concepts.
Acta Materialia,2017,122:448-511
|
CSCD被引
580
次
|
|
|
|
6.
Senkov O N. Refractory high-entropy alloys.
Intermetallics,2010,18(9):1758-1765
|
CSCD被引
247
次
|
|
|
|
7.
Senkov O N. Mechanical properties of Nb_(25)Mo_(25)Ta_(25)W_(25) and V_(20)Nb_(20)Mo_(20)Ta_(20)W_(20) refractory high entropy alloys.
Intermetallics,2011,19(5):698-706
|
CSCD被引
303
次
|
|
|
|
8.
武俊霞. 难熔高熵合金成分设计微观组织及性能研究进展.
航空材料学报,2022,42(6):33-47
|
CSCD被引
13
次
|
|
|
|
9.
姜萱. 难熔高熵合金制备及性能研究进展.
材料工程,2022,50(3):33-42
|
CSCD被引
17
次
|
|
|
|
10.
张聪. 高通量计算与机器学习驱动高熵合金的研究进展.
材料工程,2023,51(3):1-16
|
CSCD被引
9
次
|
|
|
|
11.
Sahlberg M. Superior hydrogen storage in high entropy alloys.
Scientific Reports,2016,6(1):1-6
|
CSCD被引
23
次
|
|
|
|
12.
Karlsson D. Structure and hydrogenation properties of a HfNbTiVZr high-entropy alloy.
Inorganic Chemistry,2018,57(4):2103-2110
|
CSCD被引
12
次
|
|
|
|
13.
Yang F. Recent progress on the development of high entropy alloys(HEAs) for solid hydrogen storage: a review.
International Journal of Hydrogen Energy,2022,47:11236-11249
|
CSCD被引
12
次
|
|
|
|
14.
Kao Y F. Hydrogen storage properties of multi-principal-component CoFeMnTixVyZrz alloys.
International Journal of Hydrogen Energy,2010,35(17):9046-9059
|
CSCD被引
15
次
|
|
|
|
15.
Montero J. Improving the hydrogen cycling properties by Mg addition in Ti-V-Zr-Nb refractory high entropy alloy.
Scripta Materialia,2021,194:113699
|
CSCD被引
9
次
|
|
|
|
16.
Zlotea C. Hydrogen sorption in TiZrNbHfTa high entropy alloy.
Journal of Alloys and Compounds,2019,775:667-674
|
CSCD被引
13
次
|
|
|
|
17.
Shen H. A novel TiZrHfMoNb highentropy alloy for solar thermal energy storage.
Nanomaterials,2019,9(2):248
|
CSCD被引
3
次
|
|
|
|
18.
Martin M. Absorption and desorption kinetics of hydrogen storage alloys.
Journal of Alloys and Compounds,1996,238(1/2):193-201
|
CSCD被引
25
次
|
|
|
|
19.
Forde T. Influence of intrinsic hydrogenation/dehydrogenation kinetics on the dynamic behaviour of metal hydrides:a semi-empirical model and its verification.
International Journal of Hydrogen Energy,2007,32(8):1041-1049
|
CSCD被引
4
次
|
|
|
|
20.
张诚.
锆、钛及高熵合金的储氢/氘行为研究,2019
|
CSCD被引
1
次
|
|
|
|
|