帮助 关于我们

返回检索结果

TiVNbTa难熔高熵合金的吸放氢动力学
Hydrogen absorption-desorption kinetics of TiVNbTa refractory high-entropy alloy

查看参考文献21篇

龙雁 1,2   张李敬 1,2   杨继荣 1,2   王芬 1,2 *  
文摘 通过真空电磁感应悬浮熔炼技术制备TiVNbTa难熔高熵合金试样,采用多通道储氢性能测试仪测试合金的吸放氢性能,并研究该合金的吸(放)氢行为及其动力学机制。结果表明:单相BCC结构的TiVNbTa难熔高熵合金吸氢后生成TiH_(1.971),Nb_(0.696)V_(0.304)H和Nb_(0.498)V_(0.502)H_2 3种氢化物新相。氢化高熵合金粉末在519,593 K和640 K分别发生氢化物的分解反应,放氢后恢复单相BCC结构,因此TiVNbTa合金的吸氢反应属于可逆反应。该合金在423~723 K温度区间具有较高的吸(放)氢速率,其吸(放)氢动力学模型分别符合Johnson-Mehl-Avrami(JMA)方程和二级速率方程,吸(放)氢的表观活化能Ea分别为-21.87 J/mol和8.67 J/mol。
其他语种文摘 TiVNbTa refractory high-entropy alloy was prepared by vacuum electromagnetic levitation melting technology. The hydrogen absorption and desorption properties of the alloy were tested by multichannel hydrogen storage tester, the hydrogen absorption-desorption behavior and corresponding kinetic mechanisms were investigated. The results show that BCC single-phase structure in the alloy is transformed into three new phases including TiH_(1.971), Nb_(0.696)V_(0.304)H and Nb_(0.498)V_(0.502)H_2 after the hydrogen absorption process. The hydrides in the hydrogenated high-entropy alloy decompose at 519, 593 K and 640 K, respectively and change to BCC phase again after hydrogen desorption process. Therefore, the hydrogenation reaction is reversible. The alloy exhibits high hydrogenation (dehydrogenation) rates at 423- 723 K. The kinetics of hydrogen absorption and desorption can be described by Johnson-Mehl-Avrami (JMA) model and second-order rate model, respectively. The apparent activation energies Ea of hydrogen absorption and desorption are -21.87 J/mol and 8.67 J/mol, respectively.
来源 材料工程 ,2024,52(1):101-107 【核心库】
DOI 10.11868/j.issn.1001-4381.2022.000592
关键词 难熔高熵合金 ; 吸放氢动力学 ; 表观活化能 ; 可逆反应
地址

1. 广东省金属新材料制备与成形重点实验室, 广东省金属新材料制备与成形重点实验室, 广州, 510640  

2. 华南理工大学机械与汽车工程学院, 广州, 510640

语种 中文
文献类型 研究性论文
ISSN 1001-4381
学科 金属学与金属工艺
基金 广东省自然科学基金面上项目 ;  广州市基础研究计划基础与应用基础研究项目
文献收藏号 CSCD:7652194

参考文献 共 21 共2页

1.  Faye O. A critical review on the current technologies for the generation,storage,and transportation of hydrogen. International Journal of Hydrogen Energy,2022,47:13771-13802 CSCD被引 16    
2.  高金良. 氢储存技术及其储能应用研究进展. 金属功能材料,2016,23(1):1-11 CSCD被引 9    
3.  Abe J O. Hydrogen energy, economy and storage:review and recommendation. International Journal of Hydrogen Energy,2019,44(29):15072-15086 CSCD被引 116    
4.  Tsai M H. High-entropy alloys:a critical review. Materials Research Letters,2014,2(3):107-123 CSCD被引 215    
5.  Miracle D B. A critical review of high entropy alloys and related concepts. Acta Materialia,2017,122:448-511 CSCD被引 580    
6.  Senkov O N. Refractory high-entropy alloys. Intermetallics,2010,18(9):1758-1765 CSCD被引 247    
7.  Senkov O N. Mechanical properties of Nb_(25)Mo_(25)Ta_(25)W_(25) and V_(20)Nb_(20)Mo_(20)Ta_(20)W_(20) refractory high entropy alloys. Intermetallics,2011,19(5):698-706 CSCD被引 303    
8.  武俊霞. 难熔高熵合金成分设计微观组织及性能研究进展. 航空材料学报,2022,42(6):33-47 CSCD被引 13    
9.  姜萱. 难熔高熵合金制备及性能研究进展. 材料工程,2022,50(3):33-42 CSCD被引 17    
10.  张聪. 高通量计算与机器学习驱动高熵合金的研究进展. 材料工程,2023,51(3):1-16 CSCD被引 9    
11.  Sahlberg M. Superior hydrogen storage in high entropy alloys. Scientific Reports,2016,6(1):1-6 CSCD被引 23    
12.  Karlsson D. Structure and hydrogenation properties of a HfNbTiVZr high-entropy alloy. Inorganic Chemistry,2018,57(4):2103-2110 CSCD被引 12    
13.  Yang F. Recent progress on the development of high entropy alloys(HEAs) for solid hydrogen storage: a review. International Journal of Hydrogen Energy,2022,47:11236-11249 CSCD被引 12    
14.  Kao Y F. Hydrogen storage properties of multi-principal-component CoFeMnTixVyZrz alloys. International Journal of Hydrogen Energy,2010,35(17):9046-9059 CSCD被引 15    
15.  Montero J. Improving the hydrogen cycling properties by Mg addition in Ti-V-Zr-Nb refractory high entropy alloy. Scripta Materialia,2021,194:113699 CSCD被引 9    
16.  Zlotea C. Hydrogen sorption in TiZrNbHfTa high entropy alloy. Journal of Alloys and Compounds,2019,775:667-674 CSCD被引 13    
17.  Shen H. A novel TiZrHfMoNb highentropy alloy for solar thermal energy storage. Nanomaterials,2019,9(2):248 CSCD被引 3    
18.  Martin M. Absorption and desorption kinetics of hydrogen storage alloys. Journal of Alloys and Compounds,1996,238(1/2):193-201 CSCD被引 25    
19.  Forde T. Influence of intrinsic hydrogenation/dehydrogenation kinetics on the dynamic behaviour of metal hydrides:a semi-empirical model and its verification. International Journal of Hydrogen Energy,2007,32(8):1041-1049 CSCD被引 4    
20.  张诚. 锆、钛及高熵合金的储氢/氘行为研究,2019 CSCD被引 1    
引证文献 1

1 龙雁 TiVNbTa高熵合金球形粉末制备及选区激光熔化成形 中国有色金属学报,2024,34(4):1140-1153
CSCD被引 0 次

显示所有1篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号