一种基于角度信息的约束高维多目标进化算法
A Constrained Many-Objective Evolutionary Algorithm Based on Angle Information
查看参考文献30篇
文摘
|
目前约束高维多目标进化算法大多注重提高收敛精度,而收敛速度相对较慢.为提高算法的收敛速度,提出一种基于角度信息的约束高维多目标进化算法.该算法提出基于角度违反度函数的选择操作,依据动态的收敛性和分布性直接选择较优个体,提高收敛速度;此外,提出了基于差分进化算法的交叉操作,在不同的进化阶段选用不可行解参与交叉操作,补偿收敛精度.在标准测试函数集C-DTLZ上进行仿真实验,并与当前国内外性能优异的4种约束高维多目标进化算法进行对比,证明了本文算法收敛精度保持良好,而收敛速度得到了提升,且目标维数越高提升效果越明显. |
其他语种文摘
|
Most of the current constrained many-objective evolutionary algorithms focus on the convergence accuracy, but the convergence speed is relatively slow. In order to improve the convergence speed, a constrained many-objective evolutionary algorithm based on angle information (CMaOEA-AI) is proposed. In the algorithm, a selection operation based on the angle violation function is proposed to improve the convergence speed, which directly selects the superior individuals according to the dynamic convergence and diversity. Thereafter a crossover operation based on the differential evolutionary algorithm is proposed, which can select the infeasible solutions to participate in the crossover operation at different evolutionary stages. Simulation experiments are performed on the standard test function sets C-DTLZ. Compared with four stateof- the-art constrained many-objective evolutionary algorithms, the proposed algorithm shows good convergence accuracy while the convergence speed is greatly improved, and the higher the objective dimension, the better the effect. |
来源
|
电子学报
,2021,49(11):2208-2216 【核心库】
|
DOI
|
10.12263/DZXB.20201044
|
关键词
|
约束高维多目标优化
;
角度违反度
;
选择操作
;
差分算法
;
交叉操作
|
地址
|
1.
哈尔滨工程大学信息与通信工程学院, 黑龙江, 哈尔滨, 150001
2.
中央民族大学信息工程学院, 北京, 100081
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0372-2112 |
学科
|
自动化技术、计算机技术 |
基金
|
国家自然科学基金
|
文献收藏号
|
CSCD:7109404
|
参考文献 共
30
共2页
|
1.
Zhou Y. Tri-goal evolution framework for constrained many-objective optimization.
IEEE Transactions on Systems, Man & Cybernetics Systems,2018:1-14
|
CSCD被引
1
次
|
|
|
|
2.
Li M Q. An angle based constrained many-objective evolutionary algorithm.
Applied Intelligence,2017,47:705-720
|
CSCD被引
3
次
|
|
|
|
3.
顾清华. 求解约束高维多目标问题的分解约束支配NSGA-II优化算法.
控制与决策,2020,35(10):2466-2474
|
CSCD被引
10
次
|
|
|
|
4.
Miyakawa M. Utilization of infeasible solutions in MOEA/D for solving constrained many-objective optimization problems.
Proceedings of the Genetic and Evolutionary Computation Conference Companion,2017:35-36
|
CSCD被引
2
次
|
|
|
|
5.
Miyakawa M. Directed mating in decomposition-based MOEA for constrained many-objective optimization.
Proceedings of the Genetic and Evolutionary Computation Conference Companion,2018:721-728
|
CSCD被引
1
次
|
|
|
|
6.
李智勇. 约束优化进化算法综述.
软件学报,2017,28(6):1529-1546
|
CSCD被引
40
次
|
|
|
|
7.
Matias J. Adaptive penalty and barrier function based on fuzzy logic.
Expert Systems with Applications,2015,42(19):6777-6783
|
CSCD被引
3
次
|
|
|
|
8.
Deb K. A fast and elitist multi-objective genetic algorithm: NSGA-II.
IEEE Transactions on Evolutionary Computation,2002,6(2):182-197
|
CSCD被引
3273
次
|
|
|
|
9.
Zhang M. Differential evolution with dynamic stochastic selection for constrained optimization.
Information Sciences,2008,178(15):3043-3074
|
CSCD被引
29
次
|
|
|
|
10.
张磊. 基于重新匹配策略的ε 约束多目标分解优化算法.
电子学报,2018,46(5):1032-1040
|
CSCD被引
10
次
|
|
|
|
11.
Zeng S Y. A general framework of dynamic constrained multiobjective evolutionary algorithms for constrained optimization.
IEEE Transactions on Cybernetics,2017,47(9):2678-2268
|
CSCD被引
2
次
|
|
|
|
12.
Asafuddoula M. A decomposition-based evolutionary algorithm for many-objective optimization.
IEEE Transactions on Evolutionary Computation,2015,19(3):445-460
|
CSCD被引
29
次
|
|
|
|
13.
Jan M A. MOEA/D for constrained multiobjective optimization: Some preliminary experimental result.
2010 UK Workshop on Computational Intelligence,2010:1-6
|
CSCD被引
1
次
|
|
|
|
14.
Jain H. An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, Part II: Handling constraints and extending to an adaptive approach.
IEEE Transactions on Evolutionary Computation,2014,18(4):602-622
|
CSCD被引
457
次
|
|
|
|
15.
Deb K. An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, Part I: Solving problems with box constraints.
IEEE Transactions on Evolutionary Computation,2014,18(4):577-601
|
CSCD被引
457
次
|
|
|
|
16.
Cai X. A decomposition-based many-objective evolutionary algorithm with two types of adjustments for direction vectors.
IEEE Transactions on Cybernetics,2018,48(8):2335-2348
|
CSCD被引
5
次
|
|
|
|
17.
Li K. An evolutionary many-objective optimization algorithm based on dominance and decomposition.
IEEE Transactions on Evolutionary Computation,2015,19(5):694-716
|
CSCD被引
64
次
|
|
|
|
18.
Li K. Two-archive evolutionary algorithm for constrained multi-objective optimization.
IEEE Transactions on Evolutionary Computation,2018,23(2):303-315
|
CSCD被引
30
次
|
|
|
|
19.
Fan Z. Push and pull search embedded in an M2M framework for solving constrained multi-objective optimization problems.
Swarm and Evolutionary Computation,2020,54:100651
|
CSCD被引
3
次
|
|
|
|
20.
Martinez S Z. A multi-objective evolutionary algorithm based on decomposition for constrained multi-objective optimization.
Proceedings of 2014 IEEE Congress on Evolutionary Computation,2014:429-436
|
CSCD被引
1
次
|
|
|
|
|