水下航行体充气上浮仿真方法研究
A Simulation Method for Inflatable Floating of Underwater Vehicle
查看参考文献19篇
文摘
|
为研究气囊展开对水下航行体充气上浮过程中的姿态变化以及运动轨迹的影响,提出一种多学科协同仿真方法。建立水下气囊的展开动力学模型,基于控制体积算法获得气囊充气展开过程的体积膨胀率曲线;在保持气囊体积膨胀率等效的条件下,建立可以同时耦合航行体6自由度刚体运动和气囊局部变形的水动力模型,并基于Navier-Stokes方程进行计算。通过仿真计算,得到水下航行体充气上浮的精细化过程,并获得水下航行体上浮时合力分量的时间历程曲线和姿态变化数据。结果表明:气囊的增浮作用能有效实现航行体的上浮回收;在上浮过程中,由于漩涡结构的不对称性使得航行体受到一定侧向力的作用,上浮时处于螺旋上升过程;上浮时,航行体会受到水流提供的竖向力作用,因此为加快上浮,上浮前应尽量调整航行体的攻角为正。 |
其他语种文摘
|
A multidisciplinary co-simulation method is proposed to study the influence of airbag deployment on the attitude and trajectory of underwater vehicle during the inflatable floating. A dynamic model of underwater airbag deployment is established, and the volume expansion curve is obtained based on the control volume algorithm. A hydrodynamic model that can simultaneously couple the six-degrees-of-freedom rigid body motion of vehicle and the local deformation of airbag is established under the condition that the volume expansion rate of airbag is equivalent. The calculation is carried out based on the Navier-Stokes equation. Through the simulation calculation, the refinement process of underwater vehicle's floating is obtained, and the resultant force component-time history curves and the attitude data of underwater vehicle during floating are obtained. The results show that the buoyancy of airbag can effectively make the vehicle float; during floating, the vehicle is subjected to a certain lateral force because of the asymmetry of the vortex structure, and it is in a 'spiral' upward process when it floats; and the vehicle is subjected to the vertical force provided by the current. In order to speed up, the angle of attack of vehicle should be adjusted to be positive before it goes up. |
来源
|
兵工学报
,2020,41(7):1249-1261 【核心库】
|
DOI
|
10.3969/j.issn.1000-1093.2020.07.001
|
关键词
|
水下航行体
;
助浮气囊
;
流体与固体耦合
;
动网格技术
|
地址
|
1.
西北工业大学航空学院, 陕西, 西安, 710072
2.
长安大学建筑工程学院, 陕西, 西安, 710061
3.
中国工程物理研究院总体工程研究所, 四川, 绵阳, 621900
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1000-1093 |
学科
|
武器工业 |
基金
|
国家自然科学基金项目
;
四川省科技计划项目
|
文献收藏号
|
CSCD:6787708
|
参考文献 共
19
共1页
|
1.
吕汝信.
负浮力操雷上浮技术研究,2005:31-39
|
CSCD被引
4
次
|
|
|
|
2.
甄文强. 无人潜航器上浮运动模型及其DOE分析.
工程设计学报,2018,25(3):309-314
|
CSCD被引
3
次
|
|
|
|
3.
李春雨. 轻型鱼雷上浮装置整流罩安全解脱技术研究.
鱼雷技术,2008,16(5):20-21,30
|
CSCD被引
2
次
|
|
|
|
4.
王栋. 波浪作用下浮囊式操雷海面漂浮数值模拟.
系统仿真学报,2013,25(5):894-898
|
CSCD被引
4
次
|
|
|
|
5.
程文鑫. 鱼雷浮囊充气过程建模与仿真.
鱼雷技术,2014,22(2):87-90
|
CSCD被引
5
次
|
|
|
|
6.
叶慧娟. 环形气囊水下充气展开过程仿真与分析.
鱼雷技术,2015,23(3):166-171
|
CSCD被引
6
次
|
|
|
|
7.
Chen C. Computational analysis of compressibility effects on cavity dynamics in high-speed water-entry.
International Journal of Naval Architecture and Ocean Engineering,2019,11(1):495-509
|
CSCD被引
5
次
|
|
|
|
8.
Hou Z. Large eddy simulation and experimental investigation on the cavity dynamics and vortex evolution for oblique water entry of a cylinder.
Applied Ocean Research,2018,81:76-92
|
CSCD被引
10
次
|
|
|
|
9.
Zhang S. Experimental investigation on roll stability of blunt-nose submarine in buoyantly rising maneuvers.
Applied Ocean Research,2018,81:34-46
|
CSCD被引
2
次
|
|
|
|
10.
王亚东. 波浪对导弹垂直发射水弹道影响研究.
兵工学报,2012,33(5):630-635
|
CSCD被引
6
次
|
|
|
|
11.
Hu Z. Trajectory tracking and re-planning with model predictive control of autonomous underwater vehicles.
The Journal of Navigation,2019,72(2):321-341
|
CSCD被引
2
次
|
|
|
|
12.
Ignacio L C. Optimized design of an autonomous underwater vehicle for exploration in the Caribbean Sea.
Ocean Engineering,2019,187:106184
|
CSCD被引
2
次
|
|
|
|
13.
潘光. UUV水下对接过程中非定常流体动力数值仿真.
鱼雷技术,2010,18(5):330-334
|
CSCD被引
1
次
|
|
|
|
14.
Nair V V. Water entry and exit of axisymmetric bodies by CFD approach.
Journal of Ocean Engineering and Science,2018,3(2):156-174
|
CSCD被引
6
次
|
|
|
|
15.
Tanavde A S. Airbag modeling using initial metric methodology.
SAE Transactions,1995,38(2):1576-1589
|
CSCD被引
1
次
|
|
|
|
16.
万鑫铭. 一种基于IMM方法的气囊折叠参数化设计的应用.
计算机仿真,2006,23(5):231-233,306
|
CSCD被引
6
次
|
|
|
|
17.
卫剑征. Z形折叠管充气展开过程数值模拟与试验.
力学与实践,2009,31(3):16-22
|
CSCD被引
3
次
|
|
|
|
18.
Heim E R.
CFD wing/pylon/finned store mutual interference wind tunnel experiment: AEDC-TSR-91-P4,1991
|
CSCD被引
3
次
|
|
|
|
19.
Levchenya A M. RANS-based numerical simulation and visualization of the horseshoe vortex system in the leading edge endwall region of a symmetric body.
International Journal of Heat and Fluid Flow,2010,31(6):1107-1112
|
CSCD被引
1
次
|
|
|
|
|