微流控技术在含能材料制备中的应用及其发展趋势
Application and Development Trend of Microfluidic Technology in Preparation of Energetic Materials
查看参考文献102篇
文摘
|
基于目前国内外对微流控技术相关研究,从设备和材料性能调控的角度综述了微流控技术在含能化合物合成、单质含能材料改性、复合含能材料制备中的研究进展;并基于发展需求指出今后应重点攻克微通道堵塞问题,拓展含固体系应用;结合流场模拟仿真,精准选择工艺参数;进一步联合在线检测技术,建立自动化反馈调节系统实现含能材料智能化制备;发挥高通量优势,推进微流控技术在含能材料工业化生产中的应用。附参考文献102篇。 |
其他语种文摘
|
Based on the current research on microfluidic technology at home and abroad,the research progress of microfluidic technology in the synthesis of energetic compounds,modification of energetic materials,and preparation of composite energetic materials is reviewed from the perspective of equipment and material performance regulation. According to the development needs,several priorities for subsequent development are proposed: overcome the problem of microchannel blockage and expanding the application of solid-containing systems; combine with flow field simulation for accurate selection of process parameters; further combine on-line detection technology to establish an automatic feedback adjustment system to realize intelligent preparation of energetic materials; give full play to the advantages of high throughput and promote the application of microfluidic technology in the industrial production of energetic materials. 102 References are attached. |
来源
|
火炸药学报
,2022,45(4):439-451 【核心库】
|
DOI
|
10.14077/j.issn.1007-7812.202203034
|
关键词
|
应用化学
;
微流控
;
含能材料
;
包覆
;
改性
|
地址
|
西安近代化学研究所燃烧与爆炸技术重点实验室, 陕西, 西安, 710065
|
语种
|
中文 |
文献类型
|
综述型 |
ISSN
|
1007-7812 |
学科
|
化学;武器工业 |
基金
|
国家自然科学基金
;
国防科技重点实验室基金
|
文献收藏号
|
CSCD:7288119
|
参考文献 共
102
共6页
|
1.
Manz A. Micromachining of monocrystalline silicon and glass for chemical analysis systems a look into next century's technology or just a fashionable craze.
TrAC Trends in Analytical Chemistry,1991,10(5):144-149
|
CSCD被引
10
次
|
|
|
|
2.
Thorsen T. Microfluidic large-scale integration.
Science,2002,298(5593):580-584
|
CSCD被引
77
次
|
|
|
|
3.
Xu D D. Automatic smartphone-based microfluidic biosensor system at the point of care.
Biosensors & Bioelectronics,2018,110:78-88
|
CSCD被引
2
次
|
|
|
|
4.
Wang Q P. Materials synthesis and catalysis in microfluidic devices: prebiotic chemistry in mineral membranes.
Chemcatchem,2020,12(1):63-74
|
CSCD被引
3
次
|
|
|
|
5.
Yue J. Multiphase flow processing in microreactors combined with heterogeneous catalysis for efficient and sustainable chemical synthesis.
Catalysis Today,2018,308:3-19
|
CSCD被引
11
次
|
|
|
|
6.
Ran R. Multiphase microfluidic synthesis of micro-and nanostructures for pharmaceutical applications.
Chemical Engineering Science,2017,169:78-96
|
CSCD被引
9
次
|
|
|
|
7.
Li Z Y. Nanoliter-scale oil-air-droplet chip-based single cell proteomic analysis.
Analytical Chemistry,2018,90(8):5430-5438
|
CSCD被引
18
次
|
|
|
|
8.
Teh S Y. Droplet microfluidics.
Lab Chip,2008,8(2):198-220
|
CSCD被引
79
次
|
|
|
|
9.
Lagus T P. A review of the theory,methods and recent applications of high-throughput single-cell droplet microfluidics.
Journal of Physics D: Applied Physics,2013,46(11):114005
|
CSCD被引
16
次
|
|
|
|
10.
卢佳敏. 微流控技术在微/纳米材料合成中的研究进展.
化学学报,2021,79(7):809-819
|
CSCD被引
5
次
|
|
|
|
11.
邹倩.
基于微流控技术一步制备包封原位形成硫化铋纳米粒的海藻酸盐微球及其光热效应,2018
|
CSCD被引
1
次
|
|
|
|
12.
周楠.
典型硝基酚类起爆药的嵌段流合成及结晶过程研究,2016
|
CSCD被引
4
次
|
|
|
|
13.
Becker H. Polymer microfluidic devices.
Talanta,2002,56(2):267-287
|
CSCD被引
27
次
|
|
|
|
14.
陈梦月. 微流控通道加工技术的研究进展.
微纳电子技术,2021,58(3):244-253
|
CSCD被引
3
次
|
|
|
|
15.
Taranto V. The analysis of nitrate explosive vapour samples using Lab-ona-chip instrumentation.
J Chromatogr A,2019,1602:467-473
|
CSCD被引
2
次
|
|
|
|
16.
Pumera M. Chapter 35 microchip electrophoresis/electrochemistry systems for analysis of nitroaromatic explosives.
Comprehensive Analytical Chemistry,2007,49:873-884
|
CSCD被引
1
次
|
|
|
|
17.
Wang J. A chipbased capillary electrophoresis-contactless conductivity microsystem for fast measurements of low-explosive ionic components.
The Analyst,2002,127(6):719-723
|
CSCD被引
7
次
|
|
|
|
18.
Hu T. Simple and sensitive colorimetric detection of a trace amount of 2,4,6-trinitrotoluene (TNT) with QD multilayer-modified microchannel assays.
Materials Chemistry Frontiers,2019,3(2):193-198
|
CSCD被引
1
次
|
|
|
|
19.
Charles P T. A high aspect ratio bifurcated 128-microchannel microfluidic device for environmental monitoring of explosives.
Sensors,2018,18(5):1568
|
CSCD被引
1
次
|
|
|
|
20.
Charles P T. Multichanneled single chain variable fragment (scFv) based microfluidic device for explosives detection.
Talanta,2015,144:439-444
|
CSCD被引
1
次
|
|
|
|
|