黄土高原典型流域LCM模型集总、半分布和分布式构建对比分析
Comparison of LCM hydrological models with lumped, semi-distributed and distributed building structures in typical watershed of Yellow River Basin
查看参考文献26篇
文摘
|
暴雨中心的空间分布是影响小流域暴雨洪水过程模拟精度的关键要素。不同模型构建方式对降雨空间异质性的响应差异很大,选择恰当的水文模型构建方式对提高模型计算效率,减少降雨空间异质性对模型的影响从而提高预测精度具有重要意义。为此,本文基于刘昌明提出的适用于黄土高原超渗产流机制的LCM (Liu Changming Model)模型,分别构建了集总式、半分布式和全分布式的暴雨-径流模型,旨在比较分析不同模型构建方式对于降雨空间异质性的响应及其对模拟精度和计算效率的影响。结果表明:分布式构建模拟精度最高,纳什效率系数达到0.81,相关系数达到0.82;集总式构建计算时间最短;相比较而言,半分布式构建方法纳什效率系数达到0.78,主峰值模拟精度分别达到76.1%和65.8%。总体上,全分布式构建方法模拟精度最高,集总式计算耗时最短效率最高,半分布式在保持较高模拟精度的同时也具有较高的计算效率。 |
其他语种文摘
|
The distribution of rainstorm center is critical factor influencing the simulation accuracy of rainstorm runoff process. There are significant differences among the varying discretization responding to rainfall heterogeneities, thus it is important to improve simulation efficiency and accuracy by selecting appropriate discretization methods for reducing the influence of rainfall heterogeneity. For this, the LCM model which deduced from the unsaturated infiltration theory in Loess Plateau by Liu Changming was modeled in three ways: lumped, semi-distributed and distributed. The simulation results indicate that: the NSE with distributed method arrives at 0.81 and correlation coefficient attains 0.82 which shows the best fitness to gauge data. Comparatively, NSE of semi-distributed method arrives at 0.78, while the fitness to main peak of outlet stream-flow reaches 76.1% and 65.8%. Generally, distributed method shows the highest simulation accuracy, lumped method owns the highest calculation efficiency, and semi-distributed method indicates high simulation accuracy, and high calculation efficiency at the same time. So, spatial discretization of modeling is helpful to reduce the influence of rainfall heterogeneity and to improve simulation accuracy of LCM model, but it will consume more time. Thus, it is appropriate to select suitable spatial discretization methods according to the application requirements. |
来源
|
地理学报
,2014,69(1):90-99 【核心库】
|
DOI
|
10.11821/dlxb201401009
|
关键词
|
LCM模型
;
降雨空间异质性
;
黄河流域
;
孤山川
;
暴雨洪水
;
分布式构建
|
地址
|
1.
北京师范大学地理学与遥感科学学院, 北京, 100875
2.
北京师范大学水科学研究院, 中国科学院陆地水循环与地表过程重点实验室, 北京, 100875
3.
黄河水利委员会, 郑州, 450003
4.
黄河水利科学研究院, 郑州, 450003
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0375-5444 |
学科
|
地球物理学;大气科学(气象学) |
基金
|
国家“十二五”科技支撑计划项目
;
水利部公益项目
;
中央高校基本科研业务费专项资金
|
文献收藏号
|
CSCD:5049790
|
参考文献 共
26
共2页
|
1.
Beven K J.
Rainfall-runoff Modelling: The Primer,2001
|
CSCD被引
2
次
|
|
|
|
2.
Chiew F H S. Comparison of six rainfall-runoff modelling approaches.
Journal of Hydrology,1993,147(1):1-36
|
CSCD被引
10
次
|
|
|
|
3.
Beven K J. A physically based, variable contributing area model of basin hydrology/Un modele a base physique de zone d'appel variable de l'hydrologie du bassin versant.
Hydrological Sciences Journal,1979,24(1):43-69
|
CSCD被引
286
次
|
|
|
|
4.
Abbott M B. An introduction to the European Hydrological System: Systeme Hydrologique Europeen, "SHE", 1.
Journal of Hydrology,1986,87(1):45-59
|
CSCD被引
94
次
|
|
|
|
5.
Bronstert A. Modelling of runoff generation and soil moisture dynamics for hillslopes and micro-catchments.
Journal of Hydrology,1997,198(1/4):177-195
|
CSCD被引
11
次
|
|
|
|
6.
赵人俊.
流域水文模拟:新安江模型与陕北模型,1984
|
CSCD被引
5
次
|
|
|
|
7.
Liu C M. Development of hydro-informatic modelling system and its application.
Science in China Series E: Technological Sciences,2008,51(4):456-466
|
CSCD被引
5
次
|
|
|
|
8.
刘昌明. 水循环多元综合模拟系统(HIMS)的研究进展.
水利发展研究,2010,8(3):5-15
|
CSCD被引
3
次
|
|
|
|
9.
Borah D K. DWSM: A dynamic watershed simulation model.
Mathematical Models of Small Watershed Hydrology and Applications,2002:113-166
|
CSCD被引
3
次
|
|
|
|
10.
Bicknell B R.
Hydrologic simulation program-FORTRAN (HSPF): User's Manual for Release 10. Rep. No. EPA/600/R-93/174,1993
|
CSCD被引
1
次
|
|
|
|
11.
Young R A.
AGNPS, Agricultural non-point-source pollution model. Conservation Research Report,1987
|
CSCD被引
1
次
|
|
|
|
12.
Beasley D B. ANSWERS.
Transactions of the ASAE,1980,23(4):938-944
|
CSCD被引
89
次
|
|
|
|
13.
Refshaard J C. MIKE SHE.
Computer Models of Watershed Hydrology,1995:809-846
|
CSCD被引
4
次
|
|
|
|
14.
Liu C M. Development of eco-hydrological assessment tool and its application.
Science in China Series E: Technological Sciences,2009,52(7):1947-1957
|
CSCD被引
5
次
|
|
|
|
15.
刘昌明. 黄土高原暴雨径流预报关系初步实验研究.
科学通报,1965,2(2):158-161
|
CSCD被引
11
次
|
|
|
|
16.
焦恩泽. 孤山川流域水沙变化趋势的分析.
人民黄河,1992(6):5
|
CSCD被引
1
次
|
|
|
|
17.
王国庆. 黄土高原孤山川流域水沙变化研究综述.
西北水资源与水工程,2003,14(3):13-16
|
CSCD被引
5
次
|
|
|
|
18.
李春娟. 孤山川流域降水变化特征及趋势分析.
地下水,2012(4):136-138
|
CSCD被引
2
次
|
|
|
|
19.
刘卓颖. 黄土高原地区小尺度分布式水文模型研究.
人民黄河,2005,27(10):19-21
|
CSCD被引
2
次
|
|
|
|
20.
刘昌明.
流域水循环分布式模拟,2006:57-58
|
CSCD被引
1
次
|
|
|
|
|