城市地理研究中的单分形、多分形和自仿射分形
Monofractal,multifractals,and self-affine fractals in urban studies
查看参考文献49篇
文摘
|
分形几何学在城市地理研究中具有广泛的应用,然而很多基本概念却让初学者感到迷惑。如何区分单分形、自仿射分形与多分形,是一个基本而重要的问题。简单分形容易理解,而真实的地理现象很少是单分形的。城市生长过程具有自仿射特征,而城市空间格局却具有多分形性质。作者发现,各种分形的共性在于三个方面:标度律、分数维和熵守恒。论文基于标度、分维和熵守恒公式,借助隐喻城市生长的规则分形来区分单分形、多分形和自仿射分形,讨论分形系统演化的机理、分形与空间自相关和空间异质性的联系,同时澄清一些在地理分形研究中的常见错误概念。最后以城市位序-规模分布为例,说明并对比单分形和多分形在城市地理研究中的建模与应用思路。 |
其他语种文摘
|
Fractal geometry provides a powerful tool for scale-free spatial modeling and analyses in geography.However,a number of basic concepts are puzzling.The three common fractals,that is,monofractal (unifractal),multifractals,and self-affine fractal,are often misunderstood by students of geography.This article clarifies some confusing fractal concepts for urban fractal modeling and fractal dimension analysis.Using simple mathematical models based on three growing fractals that bear an analogy to urban growth,we can distinguish the three types of common fractal structure.The similarities and differences between monofractal,multifractals,and self-affine fractal are as follows:1) A monofractal is a simple self-similar fractal that bears only one scaling factor (scaling ratio),and a multifractal object is a complex fractal system that bears at least two scaling factors for different parts.Each scaling factor dominates all different scales and is independent of directions and levels.2) A self-affine fractal bears different scaling factors in different directions of growth or at different levels of scales.The basic feature of self-affine growing fractal is anisotropy,which differs from the isotropic self-similar growing fractals.3) Both self-affine fractal and multifractals may possess two scaling factors,but there are essential differences between self-affine fractals and multifractals.A self-affine fractal often takes on the form of bi-fractals,which can be reflected by two scaling ranges on a log-log plot.However,there is only one scaling range for a multifractal pattern.As an example,two-scaling fractal modeling is applied to the rank-size distributions of cities to illustrate the concept of urban multifractals.By comparison with these multifractal models,we can better understand monofractals and self-affine fractals in geographical research. |
来源
|
地理科学进展
,2019,38(1):38-49 【核心库】
|
DOI
|
10.18306/dlkxjz.2019.01.004
|
关键词
|
地理分形
;
单分形
;
双分形
;
多分形
;
自仿射分形
;
多分维谱
;
分形城市
|
地址
|
北京大学城市与环境学院城市与经济地理系, 北京, 100871
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1007-6301 |
基金
|
国家自然科学基金
|
文献收藏号
|
CSCD:6415258
|
参考文献 共
49
共3页
|
1.
陈彦光.
分形城市系统:标度、对称和空间复杂性,2008
|
CSCD被引
13
次
|
|
|
|
2.
陈彦光. 简单、复杂与地理分布模型的选择.
地理科学进展,2015,34(3):321-329
|
CSCD被引
21
次
|
|
|
|
3.
陈彦光. 城市形态的分维估算与分形判定.
地理科学进展,2017,36(5):529-539
|
CSCD被引
20
次
|
|
|
|
4.
陈勇. 城市规模分布的分形研究.
经济地理,1993,13(3):48-53
|
CSCD被引
35
次
|
|
|
|
5.
王放.
非线性人口学导论,1995
|
CSCD被引
5
次
|
|
|
|
6.
周一星. 主要经济联系方向论.
城市规划,1998,22(2):22-25
|
CSCD被引
32
次
|
|
|
|
7.
朱晓华.
地理空间信息的分形与分维,2007
|
CSCD被引
12
次
|
|
|
|
8.
Anselin L. The moran scatterplot as an ESDA tool to assess local instability in spatial association.
Spatial analytical perspectives on GIS,1996:111-125
|
CSCD被引
19
次
|
|
|
|
9.
Appleby S. Multifractal characterization of the distribution pattern of the human population.
Geographical Analysis,1996,28(2):147-160
|
CSCD被引
6
次
|
|
|
|
10.
Ariza-Villaverde A B. Multifractal analysis of axial maps applied to the study of urban morphology.
Computers, Environment and Urban Systems,2013,38:1-10
|
CSCD被引
9
次
|
|
|
|
11.
Batty M.
Fractal cities:A geometry of form and function,1994
|
CSCD被引
41
次
|
|
|
|
12.
Batty M. Space, scale, and scaling in entropy maximizing.
Geographical Analysis,2010,42(4):395-421
|
CSCD被引
5
次
|
|
|
|
13.
Benguigui L. The dynamics of the Tel Aviv morphology.
Environment and Planning B:Planning and Design,2006,33(2):269-284
|
CSCD被引
5
次
|
|
|
|
14.
Benguigui L. Is the suburban railway system a fractal?.
Geographical Analysis,1991,23(4):362-368
|
CSCD被引
40
次
|
|
|
|
15.
Chen Y G. Derivation of the functional relations between fractal dimension and shape indices of urban form.
Computers, Environment and Urban Systems,2011,35(6):442-451
|
CSCD被引
11
次
|
|
|
|
16.
Chen Y G. The rank-size scaling law and entropy-maximizing principle.
Physica A,2012,391(3):767-778
|
CSCD被引
4
次
|
|
|
|
17.
Chen Y G. Zipf's law, 1/f noise, and fractal hierarchy.
Chaos, Solitons & Fractals,2012,45(1):63-73
|
CSCD被引
2
次
|
|
|
|
18.
Chen Y G. The distance-decay function of geographical gravity model:Power law or exponential law?.
Chaos, Solitons & Fractals,2015,77:174-189
|
CSCD被引
7
次
|
|
|
|
19.
Chen Y G. The evolution of Zipf's law indicative of city development.
Physica A,2016,443:555-567
|
CSCD被引
6
次
|
|
|
|
20.
Chen Y G. Modeling the self-affine structure and optimization conditions of city systems using the idea from fractals.
Chaos, Solitons & Fractals,2009,41(2):615-629
|
CSCD被引
7
次
|
|
|
|
|