页岩气水平井试井模型及井间干扰特征
Multi-stage fracturing horizontal well interference test model and its application
查看参考文献20篇
文摘
|
页岩气田采用水平井井网大规模开发后,井间干扰造成的“压力下降快、气井过早废弃”的问题日益严重,亟须认识页岩气井的井间干扰特征。为此,先将水平井多段压裂改造后的页岩储层划分为压裂裂缝、SRV和未改造基质3个区域,然后根据各区域的孔缝特征和流动机制建立了多区域耦合的渗流模型,并采用PEBI网格和有限体积法进行数值求解。利用数值模拟,分析了连通渗透率和激动量等因素对于干扰试井测试结果及压力场分布特征的影响,并以焦页7井组中的JY7-1 HF井和JY7-2 HF井为例,采用干扰测试压力拟合法计算了两井之间连通段的平均渗透率为18.5 mD,说明两井之间连通性较好,建议后期生产过程中控制本井与邻井的产气量,同时避免邻井频繁更换工作制度。未来井网部署时应根据单井设计产能,对于与邻井水平段距离较近层段应控制压裂规模,并适时开展干扰试井测试。 |
其他语种文摘
|
After the large-scale development of horizontal wells and well networks in shale gas fields,the problem of“fast pressure drop and premature gas well abandonment”caused by inter-well interference has become increasingly serious.It is urgent to understand the transient pressure of multi-stage fracturing horizontal wells under interference from adjacent wells and seepage characteristics.For this purpose,the shale reservoirs after multi-stage fracturing reformation of horizontal wells were firstly divided into three areas:fracturing fractures,SRVs and unmodified substrates.Then multi-zone coupled seepage model was established according to the characteristics of the pores in each region and the flow mechanism,and the model was numerically solved by using the PEBI grid and finite volume method.Through numerical simulation,the influences of factors such as connected permeability and agitation on the test results and pressure field distribution characteristics of interference wells were analyzed.Taking JY7-1 HF well and JY7-2 HF well in Jiaoyan 7 well group as examples,the average permeability of the connecting section between the two wells was 18.5 mD,which was calculated by interference test pressure fitting method,showing good connectivity.It is recommended that the gas production should be controlled in the later production process,while avoiding frequent replacement of working systems in adjacent wells.In the future,well pattern deployment should be based on the design productivity of a single well.The fracturing scale should be controlled for the interval close to the horizontal section of the adjacent wells,and the interference well test should be conducted in due course. |
来源
|
岩性油气藏
,2018,30(6):138-144 【核心库】
|
DOI
|
10.12108/yxyqc.20180617
|
关键词
|
页岩气
;
多段压裂水平井
;
干扰试井
;
数值模拟
|
地址
|
1.
中国石化江汉油田分公司勘探开发研究院, 武汉, 430223
2.
中国科学院力学研究所, 北京, 100190
3.
中国科学院大学, 北京, 100049
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1673-8926 |
学科
|
石油、天然气工业 |
基金
|
国家重大科技专项
|
文献收藏号
|
CSCD:6383888
|
参考文献 共
20
共1页
|
1.
张小龙. 页岩气勘探和开发进展综述.
岩性油气藏,2013,25(2):116-122
|
CSCD被引
54
次
|
|
|
|
2.
黄籍中. 四川盆地页岩气与煤层气勘探前景分析.
岩性油气藏,2009,21(2):116-120
|
CSCD被引
52
次
|
|
|
|
3.
蒋廷学. 水平井体积压裂技术研究与应用.
岩性油气藏,2018,30(3):1-11
|
CSCD被引
20
次
|
|
|
|
4.
Ajani A.
Interference study in shale plays. SPE151045,2012
|
CSCD被引
1
次
|
|
|
|
5.
Kim T H. Integrated reservoir flow and geomechanical model to generate type curves for pressure transient responses of a hydraulically-fractured well in shale gas reservoirs.
Journal of Petroleum Science and Engineering,2016,146:457-472
|
CSCD被引
2
次
|
|
|
|
6.
Bello R O.
Multi-stage hydraulically fractured shale gas rate transient analysis. SPE 126754,2010
|
CSCD被引
5
次
|
|
|
|
7.
Ozkan E. Comparison of fractured-horizontal-well performance in tight sand and shale reservoirs.
SPE Reservoir Evaluation & Engineering,2011,14(2):248-259
|
CSCD被引
34
次
|
|
|
|
8.
Al-Rbeawi S. Analysis of pressure behaviors and flow regimes of naturally and hydraulically fractured unconventional gas reservoirs using multi-linear flow regimes approach.
Journal of Natural Gas Science and Engineering,2017,45:637-658
|
CSCD被引
1
次
|
|
|
|
9.
Stalgorova E.
Practical analytical model simulate production of horizontal wells with Branch Fractures. SPE162515,2012
|
CSCD被引
1
次
|
|
|
|
10.
Zhang L H. Five-region flow model for MFHWs in dual porous shale gas reservoirs.
Journal of Natural Gas Science and Engineering,2016,33:1316-1323
|
CSCD被引
2
次
|
|
|
|
11.
Zeng J. Composite linear flow model for multi-fractured horizontal wells in heterogeneous shale reservoir.
Journal of Natural Gas Science and Engineering,2017,38:527-548
|
CSCD被引
5
次
|
|
|
|
12.
Wang J L. Approximate semi-analytical modeling of transient behavior of horizontal well intercepted by multiple pressure-dependent conductivity fractures in pressuresensitive reservoir.
Journal of Petroleum Science and Engineering,2017,153:157-177
|
CSCD被引
1
次
|
|
|
|
13.
张旭. 页岩气储层水力压裂物理模拟试验研究.
石油钻探技术,2013,41(2):69-74
|
CSCD被引
1
次
|
|
|
|
14.
陈居凯. 川南龙马溪组页岩孔隙结构综合表征及其分形特征.
岩性油气藏,2018,30(1):55-62
|
CSCD被引
28
次
|
|
|
|
15.
张烈辉. 页岩气藏表观渗透率和综合渗流模型建立.
岩性油气藏,2017,29(6):108-118
|
CSCD被引
10
次
|
|
|
|
16.
余江浩. 湖北西部上二叠统大隆组页岩气资源潜力评价.
岩性油气藏,2018,30(4):84-90
|
CSCD被引
7
次
|
|
|
|
17.
樊冬艳. 考虑多重运移机制耦合页岩气藏压裂水平井数值模拟D.
力学学报,2015,47(6):906-915
|
CSCD被引
7
次
|
|
|
|
18.
Civan F. Shale-gas permeability and diffusivity inferred by improved formulation of relevant retention and transport mechanisms.
Transport in Porous Media,2010,86(3):925-944
|
CSCD被引
49
次
|
|
|
|
19.
Ye Z H. A unified method to evaluate shale gas flow behaviours in different flow regions.
Journal of Natural Gas Science & Engineering,2015,26(C):205-215
|
CSCD被引
2
次
|
|
|
|
20.
车世琦. 测井资料用于页岩岩相划分及识别——以涪陵气田五峰组—龙马溪组为例.
岩性油气藏,2018,30(1):121-132
|
CSCD被引
14
次
|
|
|
|
|