基于声发射矩张量理论的混凝土裂纹机制反演
Inversion of Crack Mechanism in Concrete Materials Based on Moment Tensor Theory of Acoustic Emission
查看参考文献20篇
文摘
|
为探讨裂纹时空演化规律,基于改进的声发射源定位方法和矩张量理论,反演双边开口的混凝土试件压剪破坏过程中裂纹位置、裂纹类型以及裂纹面的法线方向和运动方向。分析结果表明,试件在拉应力损伤破坏区域,拉伸型裂纹扩展占主导,在剪应力损伤破坏区域,剪切型裂纹扩展占主导。矩张量分析中不同类型裂纹的时空分布特征与试件实际受力和损伤情况相一致,说明矩张量理论能够有效描述拉应力、剪切应力的分布和迁移规律,这为深入研究混凝土损伤演化机理提供了有力工具。从声发射信号波形和小波时频图可以看出:拉伸型裂纹对应的声发射信号持续时间约为800 μs,频率范围是7~500 kHz;混合型裂纹和剪切型裂纹对应的声发射信号频率范围分别为7~500 kHz和7~250 kHz,持续时间相对较长,分别为1 720 μs和1 880 μs;剪切破裂要比拉伸破裂释放的能量多,同时剪切破裂释放的剪切波平均频率要比拉伸破裂释放的应力波平均频率低。 |
其他语种文摘
|
The locations, types and orientations of cracks on concrete specimens with bilateral openings during the shear failure process under uniaxial compressive loading are inversed to study the temporal and spatial evolution law of cracks based on the improved acoustic emission localization method and the moment tensor theory. The results of moment tensor analysis show that the growth of tensile cracks is dominant in the tensile damage zone, and the growth of shear cracks is dominant in the shear damage zone, which are consistent with the conditions of actual stress and damage in the specimen. This indicates that the moment tensor theory is a useful method to further study the mechanism of damage evolution in concrete,as it can be used for describing the distribution and migration of tensile stress and shear stress effectively. The results of waveform analysis show that the duration of acoustic emission (AE) signal corresponding to tensile crack is about 800 μs, and the frequency range is 7-500 kHz. The AE signals associated with mixed-mode crack and shear crack have frequency ranges from 7 kHz to 500 kHz and from 7 kHz to 250 kHz, respectively, and have higher duration of about 1 720 μs and 1 880 μs, respectively. The main reason is that the energy released by shear rupture is higher than that by tensile rupture, and the average frequency of shear wave released by shear rupture is lower than that of stress wave released by tensile rupture. |
来源
|
兵工学报
,2022,43(1):181-189 【核心库】
|
DOI
|
10.3969/j.issn.1000-1093.2022.01.020
|
关键词
|
声发射
;
矩张量
;
裂纹演化
;
波形分析
|
地址
|
1.
中国计量大学, 浙江省智能制造质量大数据溯源与应用重点实验室, 浙江, 杭州, 310018
2.
南开大学电子信息与光学工程学院, 天津, 300350
3.
北京理工大学, 爆炸科学与技术国家重点实验室, 北京, 100081
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1000-1093 |
学科
|
一般工业技术 |
基金
|
浙江省基础公益研究计划项目
;
国家自然科学基金
;
国家重点研发计划项目
|
文献收藏号
|
CSCD:7169917
|
参考文献 共
20
共1页
|
1.
王宗炼. 基于小波变换的混凝土压缩损伤模式识别.
兵工学报,2017,38(9):1745-1753
|
CSCD被引
3
次
|
|
|
|
2.
朱宏平. 利用声发射信号与速率过程理论对混凝土损伤进行定量评估.
工程力学,2008,25(1):186-191
|
CSCD被引
39
次
|
|
|
|
3.
Men J J. Acoustic emission behavior and damage evaluation of recycled aggregate concrete under compression.
Structural Control & Health Monitoring,2020,27(10):e2612
|
CSCD被引
2
次
|
|
|
|
4.
Tonelli D. Structural health monitoring based on acoustic emissions: validation on a prestressed concrete bridge tested to failure.
Sensors,2020,20(24):7272
|
CSCD被引
1
次
|
|
|
|
5.
Han Q H. Experimental study on the relationship between acoustic emission energy and fracture energy of crumb rubber concrete.
Structural Control & Health Monitoring,2018,25(10):e2240
|
CSCD被引
4
次
|
|
|
|
6.
Yue J G. Uniaxial concrete tension damage evolution using acoustic emission monitoring.
Construction and Building Materials,2020,232:117281
|
CSCD被引
8
次
|
|
|
|
7.
Sagar R V. Microcracking and fracture process in cement mortar and concrete: comparative study using acoustic emission technique.
Experimental Mechanics,2013,53(7):1161-1175
|
CSCD被引
5
次
|
|
|
|
8.
范向前. 中央带裂缝混凝土循环拉伸断裂试验Felicity效应.
复合材料学报,2019,36(12):2968-2974
|
CSCD被引
2
次
|
|
|
|
9.
Carpinteri A. Three different approaches for damage domain characterization in disordered materials: fractal energy density, b-value statistics, renormalization group theory.
Mechanics of Materials,2012,53:15-28
|
CSCD被引
5
次
|
|
|
|
10.
Ohtso M. Recommendation of RILEM TC 212-ACD: acoustic emission and related NDE techniques for crack detection and damage evaluation in concrete.
Materials & Structures,2010,43:1177-1181
|
CSCD被引
3
次
|
|
|
|
11.
Zhang Z H. A new method for determining the crack classification criterion in acoustic emission parameter analysis.
International Journal of Rock Mechanics and Mining Sciences,2020,130:104323
|
CSCD被引
14
次
|
|
|
|
12.
Ohno K. Fracture process zone in notched concrete beam under three-point bending by acoustic emission.
Construction and Building Materials,2014,67(Part B):139-145
|
CSCD被引
13
次
|
|
|
|
13.
Ohno K. Crack classification in concrete based on acoustic emission.
Construction and Building Materials,2010,24(12):2339-2346
|
CSCD被引
73
次
|
|
|
|
14.
任会兰. 基于声发射矩张量分析混凝土破坏的裂纹运动.
力学学报,2019,51(6):1830-1840
|
CSCD被引
16
次
|
|
|
|
15.
Mondoringin M R I A J. Kinematics on split-tensile test of fiber-reinforced concrete by AE.
Journal of Advanced Concrete Technology,2013,11(8):196-205
|
CSCD被引
2
次
|
|
|
|
16.
王宗炼. 基于小波变换降噪的声发射源定位方法.
振动与冲击,2018,37(4):226-232,248
|
CSCD被引
24
次
|
|
|
|
17.
Hampton J. Acoustic emission characterization of microcracking in laboratory-scale hydraulic fracturing tests.
Journal of Rock Mechanics and Geotechnical Engineering,2018,10(5):805-817
|
CSCD被引
7
次
|
|
|
|
18.
Ohtsu M. Mechanisms of corrosion-induced cracks in concrete at meso-and macro-scales.
Journal of Advanced Concrete Technology,2008,6(3):419-429
|
CSCD被引
3
次
|
|
|
|
19.
Aldahdooh M A A. Crack classification in reinforced concrete beams with varying thicknesses by mean of acoustic emission signal features.
Construction and Building Materials,2013,45:282-288
|
CSCD被引
9
次
|
|
|
|
20.
Aggelis D G. Classification of cracking mode in concrete by acoustic emission parameters.
Mechanics Research Communications,2011,38(3):153-157
|
CSCD被引
48
次
|
|
|
|
|