基于卡尔曼滤波的动态轨迹预测算法
A Dynamic Trajectory Prediction Algorithm Based on Kalman Filter
查看参考文献13篇
文摘
|
基于拟合的传统轨迹预测算法已无法满足高精度和实时性预测要求.提出基于卡尔曼滤波的动态轨迹预测算法,对移动对象动态行为进行状态估计,利用前一时刻的估计值和当前时刻的观测值更新对状态变量的估计,进而对下一时刻的轨迹位置预测.大量真实移动对象数据集上的实验结果表明:GeoLife数据集上基于卡尔曼滤波的轨迹预测算法的平均预测误差(预测轨迹点与实际轨迹点的均方根误差)为12.5米;与基于轨迹拟合的轨迹预测算法相比,T-Drive数据集预测误差平均下降了555.4米,预测准确率提升了7.1%.在保证预测时效性前提下,基于卡尔曼滤波的动态轨迹预测算法解决了轨迹预测精度较低的问题. |
其他语种文摘
|
Traditional fitting-based trajectory prediction algorithms cannot meet the requirements of high accuracy and real-time prediction.A dynamic Kalman filter based TP approach was proposed,which performs state estimation of dynamic behavior with regard to moving objects,updates the state variable estimation value based on the estimation of the previous and current observation states,in order to infer the next location of moving objects.Extensive experiments are conducted on real datasets of moving objects and the results demonstrate that the average prediction error (root mean square error between the predicted location and the actual location) of the TP algorithm based on Kalman filter is around 12.5 meters on the GeoLife datasets.The prediction error is reduced by about 555.4 meters by compared to the fitting-based TP algorithms,and the prediction accuracy is increased by 7.1% on the T-Drive datasets as well.The dynamic TP approach based on Kalman filter can handle the problem of low prediction accuracy with the guarantee of efficient time performance. |
来源
|
电子学报
,2018,46(2):418-423 【核心库】
|
DOI
|
10.3969/j.issn.0372-2112.2018.02.022
|
关键词
|
移动对象数据库
;
状态估计
;
轨迹预测
;
卡尔曼滤波
;
轨迹拟合
|
地址
|
1.
成都信息工程大学网络空间安全学院, 四川, 成都, 610225
2.
成都信息工程大学管理学院, 四川, 成都, 610103
3.
西南交通大学信息科学与技术学院, 四川, 成都, 611756
4.
成都信息工程大学软件工程学院, 四川, 成都, 610225
5.
广西师范学院计算机与信息工程学院, 广西, 南宁, 541004
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0372-2112 |
学科
|
自动化技术、计算机技术 |
基金
|
国家自然科学基金
;
国家教育部人文社会科学研究项目
;
国家教育部人文社会科学研究青年项目
;
四川省教育厅项目
;
成都信息工程大学引进人才科研启动项目
|
文献收藏号
|
CSCD:6197921
|
参考文献 共
13
共1页
|
1.
Meng X.
Moving Objects Management:Models,Techniques and Applications,2014:105-112
|
CSCD被引
1
次
|
|
|
|
2.
Kalman R E. A new approach to liner filtering and prediction problems.
Journal of Basic Engineering. D,1960,82(1):35-45
|
CSCD被引
847
次
|
|
|
|
3.
Ying J J. Semantic trajectory mining for location prediction.
Proceedings of the 19th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems,2011:34-43
|
CSCD被引
1
次
|
|
|
|
4.
Qiao S. TraPlan: an effective three-in-one trajectory prediction model in transportation networks.
IEEE Transactions on Intelligent Transportation Systems,2015,16(3):1188-1198
|
CSCD被引
5
次
|
|
|
|
5.
Gambs S. Next place prediction using mobility Markov chains.
Proceedings of the 1st Workshop on Measurement,Privacy,and Mobility. 3,2012:1-6
|
CSCD被引
1
次
|
|
|
|
6.
Qiao S. A self-adaptive parameter selection trajectory prediction approach via hidden Markov models.
IEEE Transactions on Intelligent Transportation Systems,2015,16(1):284-296
|
CSCD被引
13
次
|
|
|
|
7.
Zheng Y. Mining interesting locations and travel sequences from GPS trajectories.
Proceedings of the 18th International Conference on World Wide Web,2009:791-800
|
CSCD被引
40
次
|
|
|
|
8.
乔少杰. 一种基于高斯混合模型的轨迹预测算法.
软件学报,2015,26(5):1048-1063
|
CSCD被引
59
次
|
|
|
|
9.
Song C. Barabsi A.-L.Limits of predictability in human mobility.
Science,2010,327(5968):1018-1021
|
CSCD被引
104
次
|
|
|
|
10.
Pan T. Short-term traffic state prediction based on temporal-spatial correlation.
IEEE Transactions on Intelligent Transportation Systems,2013,14(3):1242-1254
|
CSCD被引
3
次
|
|
|
|
11.
Zhou J. A "semi-lazy" approach to probabilistic path prediction in dynamic environments.
Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,2013:748-756
|
CSCD被引
1
次
|
|
|
|
12.
Zheng Y. Geolife: A collaborative social networking service among user,location and trajectory.
IEEE Data Engineering Bulletin,2010,33(2):32-40
|
CSCD被引
35
次
|
|
|
|
13.
Yuan J. T-Drive: enhancing driving directions with taxi drivers' intelligence.
IEEE Transactions on Knowledge and Data Engineering,2013,25(1):220-232
|
CSCD被引
35
次
|
|
|
|
|