高分子溶液壁湍流减阻机理的TRPIV实验研究
TRPIV Experimental Investigation on Drag-Reduction Mechanism of Polymer Solution Wall Turbulence
查看参考文献20篇
文摘
|
利用高时间分辨率粒子图像测速技术(TRPIV)对回流式水槽中低浓度高分子溶液壁湍流的减阻机理进行实验研究。通过对比分析高分子溶液和纯水平板湍流边界层在相同来流速度下的平均速度剖面、湍流强度和雷诺应力,发现高分子溶液的壁面摩擦阻力减小了21.77%,并且其缓冲层增厚,按对数律外移,雷诺应力减小;高分子聚合物主要在近壁区起到抑制湍流脉动的作用,而在主流区的作用不太明显。用流向局部平均多尺度速度结构函数和相干结构条件采样方法,检测并对比了高分子溶液和水的壁湍流相干结构"喷射"和"扫掠"事件中的脉动速度、展向涡量、雷诺应力等物理量的二维拓扑形态,发现高分子溶液近壁区相干结构在猝发时的脉动速度减小,涡量受到抑制,雷诺应力明显减小,说明高分子溶液湍流近壁区相干结构"喷射"和"扫掠"的强度变弱,猝发频率降低,动量和能量的输运减弱,揭示出高分子溶液减阻的重要机理。 |
其他语种文摘
|
Experimental study of drag reduction mechanism of low concentration polymer solution wall turbulence in a regurgitant water channel was carried out by using time-resolution particle image velocimetry (TRPIV). Through comparative analysis of the average velocity profile, the turbulence intensity and Reynolds stress for flat plate turbulent boundary layer flow of both polymer solution and pure water at the same incident flow velocity, it is found that the skin friction of polymer solution is decreased 21.77%, its buffer layer is thickened and relocated by logarithmic law, its Reynolds stress is decreased in polymer solution, respectively. PAM polymers restrain the turbulence fluctuation mostly in near-wall region, in the main stream region, its role is not significant. By using local average multi-scale flow velocity structure function along flow direction and coherent structures conditional sampling method, the two-dimensional topologies of the fluctuating velocity, the spanwise velocity, Reynolds stress and other physical quantities in wall turbulence burst coherent structure "jet" and "sweep" events for both polymer solution and water were detected and compared. Results show that the fluctuating velocity in near-wall region coherent structure decreases, the vorticity is suppressed, and Reynolds stress decreases obviously, which indicate that the turbulence intensity of "jet" and "sweep" in polymer solution near-wall region decreases, burst frequency reduces, momentum and energy transport weakens. Above results reveal the important drag reduction mechanism of polymer solution. |
来源
|
实验力学
,2013,28(4):422-430 【核心库】
|
关键词
|
高分子溶液
;
减阻
;
高时间分辨率粒子图像测速
;
壁湍流
;
相干结构
|
地址
|
1.
天津大学力学系, 天津市现代工程力学重点实验室, 天津, 300072
2.
天津大学力学系, 天津市现代工程力学重点实验室;;非线性力学国家重点实验室, 天津, 300072
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1001-4888 |
学科
|
力学 |
基金
|
国家973计划
;
国家自然科学基金资助项目
;
中国科学院力学研究所非线性力学国家重点实验室对外开放课题联合资助
|
文献收藏号
|
CSCD:4968787
|
参考文献 共
20
共1页
|
1.
罗兴. 减阻技术在集中供热与空调水输配系统中的应用.
节能,2004,12:14-15
|
CSCD被引
1
次
|
|
|
|
2.
朱蒙生. 添加剂黏性减阻在暖通空调系统中的应用.
煤气与热力,2008,28:24-26
|
CSCD被引
1
次
|
|
|
|
3.
Toms B A. Some observations on the flow of linear polymer solutions through straight tubes at large Reynolds numbers.
Proceeding of First International Congress on Rheology,1948:135-138
|
CSCD被引
2
次
|
|
|
|
4.
Virk P S. Drag reduction fundamentals.
AIChE Journal,1975,21:625-656
|
CSCD被引
44
次
|
|
|
|
5.
Lumley J L. Drag reduction in turbulent flow by polymer additives.
J. Polymer Sci. Macromol. Rev,1973,7:263-290
|
CSCD被引
12
次
|
|
|
|
6.
Degennes P G.
Introduction to Polymer Dynamics,1990
|
CSCD被引
2
次
|
|
|
|
7.
Joseph D D.
Fluid Dynamics of Viscoelastic Liquids,1990
|
CSCD被引
6
次
|
|
|
|
8.
Rabin Y. Scale-development enhancement and damping of vorticity disturbance by polymers in elongational flow.
Phy.Rev. Lett,1989,63:512-518
|
CSCD被引
7
次
|
|
|
|
9.
Den Toonder J M J. Drag reduction by polymer additives in a turbulent pipe flow: numerical and laboratory experiments.
Journal of Fluid Mechanics,1997,337:193-231
|
CSCD被引
14
次
|
|
|
|
10.
Mccomb W D. Laser-Doppler measurements of turbulent structure.
AIChE Journal,1982,28:558-565
|
CSCD被引
2
次
|
|
|
|
11.
Donohue G L. Flow visualization of the near-wallregion in a drag-reducing channel flow.
Journal of Fluid Mechanics,1972,56:559-575
|
CSCD被引
2
次
|
|
|
|
12.
Kim K. Effects of polymer stresses on eddy structures in dragreduced turbulent channel flow.
Journal of Fluid Mechanics,2007,584:281-299
|
CSCD被引
4
次
|
|
|
|
13.
田军. 粘性减阻技术及其应用.
实验力学,1997,12(2):198-203
|
CSCD被引
8
次
|
|
|
|
14.
樊星. 用平均速度剖面法测量壁湍流摩擦阻力.
力学与实践,2005,27:28-29
|
CSCD被引
15
次
|
|
|
|
15.
Harder K J. Drag reduction and turbulent structure in two-dimensional channel flows.
Philosophical Transactions of the Royal Society,1991,336(A):19-34
|
CSCD被引
2
次
|
|
|
|
16.
Masaaki M. Experimental investigation on turbulent structure of drag reducing channel flow with blowing polymer solution from the wall.
Flow Turbulence Combust,2012,88:121-141
|
CSCD被引
2
次
|
|
|
|
17.
邵雪明. 添加聚合物对混合层流场特性影响的实验研究.
实验力学,1998,13(4):520-525
|
CSCD被引
4
次
|
|
|
|
18.
Jia Yongxia. Experimental investigation of Reynolds stress complex eddy viscosity model for coherent structure dynamics.
Science China Physics, Mechanics & Astronomy,2011,54(7):1319-1327
|
CSCD被引
8
次
|
|
|
|
19.
Yang Shaoqiong. Tomographic TR-PIV measurement of coherent structure spatial topology utilizing an improved quadrant splitting method.
Sci China-Phy Mech Astron,2012,55:1863-1872
|
CSCD被引
18
次
|
|
|
|
20.
姜楠. 雷诺应力各向异性涡黏模型的层析TRPIV测量.
力学学报,2012,44(2):213-221
|
CSCD被引
8
次
|
|
|
|
|