小麦农家种红秃头和霸王鞭的抗白粉病基因分析及染色体定位
Genetic analysis and chromosomal localization of resistance genes to powdery mildew in wheat landraces Hongtutou and Bawangbian
查看参考文献37篇
文摘
|
本研究对红秃头和霸王鞭两个小麦农家种抗白粉病基因推导显示,红秃头和霸王鞭均具有较宽的抗性谱,是良好的抗源品种,并可能携带新的抗病基因。抗白粉病遗传分析表明,红秃头对E09的抗性由1对显性基因控制,对E26和E30-2的抗性分别由1对隐性基因控制,其至少携带一显一隐2对抗白粉病基因;霸王鞭对E09的抗性由2对显性基因重叠或者独立控制,对E26的抗性由2对显性基因互补作用控制,对E30-2的抗性由1对显性基因控制,其至少携带2对显性基因。利用基因芯片结合集群分离分析法(Bulk Segregant Analysis,BSA)进行染色体定位推测出,红秃头的抗白粉病基因可能位于染色体7B和6B上,霸王鞭的抗白粉病基因可能位于染色体4A和7B上。 |
其他语种文摘
|
The gene postulation of wheat landraces Hongtutou and Bawangbian showed that they had wide resistance spectrum and may carry new powdery mildew resistance genes. Genetic analysis showed that the resistance of wheat landrace Hongtutou to powdery mildew pathogen isolate E09 was controlled by a single dominant gene and the resistance to isolates E26 and E30-2 was controlled by a single recessive gene separately. The resistance of Bawangbian to isolates E09 and E26 was separately controlled by two dominant genes and the resistance to isolate E30-2 was controlled by a single dominant gene. Illumina wheat 90K single nucleotide polymorphism(SNP) array with bulk segregant analysis(BSA) was performed to determine the chromosomal locations of the resistance genes. The results indicated that the resistance genes to wheat powdery mildew in Hongtutou may be located on chromosomes 7B and 6B,and those in Bawangbian may be located on chromosomes 4A and 7B. |
来源
|
植物病理学报
,2017,47(4):523-531 【核心库】
|
DOI
|
10.13926/j.cnki.apps.000022
|
关键词
|
小麦农家品种
;
白粉病
;
基因推导
;
遗传分析
;
基因芯片
|
地址
|
1.
中国农业科学院植物保护研究所, 国家病虫害生物学重点实验室, 北京, 100193
2.
中国农业大学植物保护学院, 北京, 100193
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0412-0914 |
学科
|
植物保护 |
基金
|
国家重点研发计划
;
国家973计划
;
国家公益性行业(农业)科研专项
|
文献收藏号
|
CSCD:6088559
|
参考文献 共
37
共2页
|
1.
Li Y H. Virulence structure of the wheat powdery mildew population in Henan Province in China during 2011-2014 (in Chinese).
植物病理学报,2016,46(4):573-576
|
CSCD被引
3
次
|
|
|
|
2.
Zhang L. Climatic risk assessment of wheat powdery mildew in China (in Chinese).
生态学杂志,2016,35(5):1330-1337
|
CSCD被引
1
次
|
|
|
|
3.
Liu S C. Genetic diversity of landrace and bred varieties of wheat in China (in Chinese).
中国农业科学,2000,33(4):20-24
|
CSCD被引
2
次
|
|
|
|
4.
Cao X R. Postulation of wheat powdery mildew resistance genes in 101 wheat cultivars ( lines) from major wheat regions in China ( in Chinese).
麦类作物学报,2010,30(5):948-953
|
CSCD被引
4
次
|
|
|
|
5.
Li M J. Postulation of seedlings resistance genes to powdery mildew in wheat commercial cultivars from Yunnan Province ( in Chinese).
麦类作物学报,2012,32(3):551-556
|
CSCD被引
2
次
|
|
|
|
6.
Cao S Q. Postulation of powder mildew resistance genes in 64 wheat varieties ( lines) in Gansu Province,China ( in Chinese).
作物学报,2010,36(12):2107-2115
|
CSCD被引
2
次
|
|
|
|
7.
Xue F. Postulation of powdery mildew resistant genes carried in some Chinese wheat landraces and the genetic diversity analysis ( in Chinese).
麦类作物学报,2009,29(2):228-235
|
CSCD被引
3
次
|
|
|
|
8.
Hu X Y. Identification of RAPD markers linked to the gene PM1 for resistance to powdery mildew in wheat.
Theoretical and Applied Genetics,1997,94(6):832-840
|
CSCD被引
20
次
|
|
|
|
9.
Zhang R. Pm55,a developmental-stage and tissue-specific powdery mildew resistance gene introgressed from Dasypyrum villosum into common wheat.
Theoretical and Applied Genetics,2016,129(10):1975-1984
|
CSCD被引
17
次
|
|
|
|
10.
Zhang Q L. Identification of cosegregating RAPD marker linked to powdery mildew resistance gene Pm18 in wheat.
中国农业科学,2004,3(6):409-415
|
CSCD被引
1
次
|
|
|
|
11.
Singrun C. Powdery mildew resistance gene Pm22 in cultivar Virest is a member of the complex Pm1 locus in common wheat (Triticum aestivum L. em Thell.).
Theoretical and Applied Genetics,2003,106(8):1420-1424
|
CSCD被引
7
次
|
|
|
|
12.
Hao Y F. Pm23:a new allele of Pm4 located on chromosome 2AL in wheat.
Theoretical and Applied Genetics,2008,117(8):1205-1212
|
CSCD被引
15
次
|
|
|
|
13.
Xie W L. Suppressed recombination rate in 6VS /6AL translocation region carrying the Pm21 locus introgressed from Haynaldia villosa into hexaploid wheat.
Molecular Breeding,2012,29(2):399-412
|
CSCD被引
2
次
|
|
|
|
14.
Luo P G. Characterization and chromosomal location of Pm40 in common wheat:a new gene for resistance to powdery mildew derived from Elytrigia intermedium.
Theoretical and Applied Genetics,2009,118(6):1059-1064
|
CSCD被引
35
次
|
|
|
|
15.
He R. Inheritance and mapping of powdery mildew resistance gene Pm43 introgressed from Thinopyrum intermedium into wheat.
Theoretical and Applied Genetics,2009,118(6):1173-1180
|
CSCD被引
18
次
|
|
|
|
16.
Miranda L M. Pm34:a new powdery mildew resistance gene transferred from Aegilops tauschii Coss. to common wheat (Triticum aestivum L.).
Theoretical and Applied Genetics,2006,113(8):1497-1504
|
CSCD被引
57
次
|
|
|
|
17.
Miranda L M. Chromosomal location of Pm35,a novel Aegilops tauschii derived powdery mildew resistance gene introgressed into common wheat (Triticum aestivum L.).
Theoretical and Applied Genetics,2007,114(8):1451-1456
|
CSCD被引
47
次
|
|
|
|
18.
Huang X Q. Microsatellite mapping of the powdery mildew resistance gene Pm5e in common wheat (Triticum aestivum L.).
Theoretical and Applied Genetics,2003,106(5):858-865
|
CSCD被引
29
次
|
|
|
|
19.
Huang X Q. High-density genetic and physical bin mapping of wheat chromosome 1D reveals that the powdery mildew resistance gene Pm24 is located in a highly recombinogenic region.
Genetica,2011,139(9):1179-1187
|
CSCD被引
4
次
|
|
|
|
20.
Xiao M G. Identification of the gene Pm47 on chromosome 7BS conferring resistance to powdery mildew in the Chinese wheat landrace Hongyanglazi.
Theoretical and Applied Genetics,2013,126(5):1397-1403
|
CSCD被引
13
次
|
|
|
|
|