分子动力学模拟与分子生物力学
Molecular Dynamics Simulation and Molecular Biomechanics
查看参考文献66篇
文摘
|
生物大分子的微观结构动力学决定其生物学功能,其力学-化学耦合规律是分子生物力学的重点关注方向。分子动力学模拟是耦合生物大分子力学-化学性质微观结构动力学基础的有效手段,其结果可用于预测结构-功能关系、指导实验设计和诠释实验结果。本文简要介绍了分子动力学模拟的方法学特点、基本工作原理及其在分子生物力学中的应用,并展望了未来可能的发展方向和应用前景。 |
其他语种文摘
|
Micro-structural dynamics of biomolecules governs their biological functions.Mechano-chemical coupling is a key issue in molecular biomechanics.Molecular dynamics simulation(MDS) is an effective approach to coordinate the biomolecular micro-structural dynamics with their mechanical and chemical features.The outcomes provide the bases in predicting the structure-function relationship,optimizing the experimental design,and interpreting the measured data.This mini-review briefly introduces the MDS approach,the working principle,and the biological significance in molecular biomechanics,and proposes the prospects of future development and potential applications. |
来源
|
生物物理学报
,2012,28(1):6-14 【核心库】
|
关键词
|
分子动力学模拟
;
分子生物力学
;
微观结构动力学
;
结构-功能关系
|
地址
|
中国科学院力学研究所生物力学与生物工程中心, 中国科学院微重力重点实验室, 北京, 100190
|
语种
|
中文 |
文献类型
|
综述型 |
ISSN
|
1000-6737 |
学科
|
生物物理学 |
基金
|
国家自然科学基金项目
|
文献收藏号
|
CSCD:4435792
|
参考文献 共
66
共4页
|
1.
Smock R G. Sending signals dynamically.
Science,2009,324:198-203
|
CSCD被引
5
次
|
|
|
|
2.
Tokuriki N. Protein dynamism and evolvability.
Science,2009,324:203-207
|
CSCD被引
9
次
|
|
|
|
3.
邓乾春. 蛋白质溶液构象的研究方法.
生物物理学报,2009,25(4):237-246
|
CSCD被引
4
次
|
|
|
|
4.
蔡刚. 单颗粒电子显微学的研究进展.
生物物理学报,2010,26(7):560-569
|
CSCD被引
1
次
|
|
|
|
5.
黄晓星. 冷冻电子断层成像技术及其在生物研究领域的应用.
生物物理学报,2010,26(7):570-578
|
CSCD被引
3
次
|
|
|
|
6.
Karplus M. Molecular dynamics simulations of biomolecules.
Nat Struct Biol,2002,9:646-665
|
CSCD被引
40
次
|
|
|
|
7.
Mulholland A J. Introduction. Biomolecular simulation.
J R Soc Interface,2008,3:S169-S172
|
CSCD被引
1
次
|
|
|
|
8.
Van Der Kamp M W. Biomolecular simulation and modelling: Status, progress and prospects.
J R Soc Interface,2008,3:S173-S190
|
CSCD被引
1
次
|
|
|
|
9.
Karplus M. Molecular dynamics and protein function.
Proc Natl Acad Sci USA,2005,102:6679-6685
|
CSCD被引
9
次
|
|
|
|
10.
Long M. Kinetics of receptor-ligand interactions in immune responses.
Cell Mol Immunol,2006,3:79-86
|
CSCD被引
2
次
|
|
|
|
11.
Huang J. Quantifying the effects of molecular orientation and length on two-dimensional receptor-ligand binding kinetics.
J Biol Chem,2004,279:44915-44923
|
CSCD被引
6
次
|
|
|
|
12.
Wu L. Impact of carrier stiffness and microtopology on twodimensional kinetics of P-selectin and P-selectin glycoprotein ligand-1 (PSGL-1) interactions.
J Biol Chem,2007,282:9846-9854
|
CSCD被引
7
次
|
|
|
|
13.
Lu S Q. Quantifying the effects of contact duration, loading rate, and approach velocity on P-selectin-PSGL-1 interactions using AFM.
Polymer,2006,47:2539-2547
|
CSCD被引
3
次
|
|
|
|
14.
Zhang Y. Low spring constant regulates P-selectin-PSGL-1 bond rupture.
Biophys J,2008,95:5439-5448
|
CSCD被引
7
次
|
|
|
|
15.
Sun G Y. Surface-bound selectin-ligand binding is regulated by carrier diffusion.
Eur Biophys J,2009,38:701-711
|
CSCD被引
2
次
|
|
|
|
16.
Fu C L. Determining beta2-integrin and intercellular adhesion molecule 1 binding kinetics in tumor cell adhesion to leukocytes and endothelial cells by a gas-driven micropipette assay.
J Biol Chem,2011,286:34777-34787
|
CSCD被引
3
次
|
|
|
|
17.
Marshall B T. Direct observation of catch bonds involving cell-adhesion molecules.
Nature,2003,423:190-193
|
CSCD被引
34
次
|
|
|
|
18.
Sarangapani K K. Low force decelerates L-selectin dissociation from P-selectin glycoprotein ligand-1 and endoglycan.
J Biol Chem,2004,279:2291-2298
|
CSCD被引
5
次
|
|
|
|
19.
Kong F. Demonstration of catch bonds between an integrin and its ligand.
J Cell Biol,2009,185:1275-1284
|
CSCD被引
14
次
|
|
|
|
20.
Brooks B R. CHARMM: The biomolecular simulation program.
J Comput Chem,2009,30:1545-1614
|
CSCD被引
52
次
|
|
|
|
|