帮助 关于我们

返回检索结果

基于路网相关性的分布式增量交通流大数据预测方法
Distributed Incremental Traffic Flow Big Data Forecasting Method Based on Road Network Correlation

查看参考文献29篇

文摘 针对城市道路拥堵问题的日益加剧的问题,智能化城市交通管理平台是缓解拥堵问题的有效方法,利用交通流大数据预测结果进行交通诱导,能够指导用户调整出行方案,有效缓解交通压力。研究了交通流大数据的分布式增量聚合方法,对海量交通流数据进行清洗统计,为交通流预测提供数据基础,基于交通流在路网中上下游路段的相关性分析,利用路口转弯率多阶分配将该相关性量化,构建基于路网相关性的空间权重矩阵,完成对于STARIMA模型的改进。通过应用试验证明,该方法能更准确的进行交通流预测,为交通诱导信息发布提供依据。
其他语种文摘 Along with the accelerating urbanization, there are more and more contradictions between the number of cars and urban transportation facilities. The congestion time and congested roads in cities are increasing. Intelligent urban traffic management platform is the effective method to alleviate the increasingly serious urban congestion problems. By using prediction results of traffic flow big data, the platform can guide users to adjust the travel plan, and ease the traffic pressure effectively. How to use a large number of spatio-temporal data related to traffic activities to predict the traffic flow is the key to realizing traffic guidance. In this article, a distributed incremental aggregation method for traffic flow data is studied. The method combines the distributed incremental data aggregation method with the traffic flow data cleaning rules, makes cleaning and counting of traffic flow big data, and provides data for traffic flow forecast. With the analysis of traffic flow correlation in the network of upstream and downstream, this article uses the multi-order of turning rate in the intersection to quantize the correlation, builds the spatial weight matrix based on the road network correlation, and improves the STARIMA model. In this article, two groups of contrast experiments were made. Through the contrast experiment between MapReduce method and MPI method, the result proves that the method proposed in this article is better than the MPI method in the development cycle and stable operation. The method's efficiency can meet the need of traffic flow data aggregation. The traffic flow statistics can be used as the basis of traffic flow forecasting. Through the contrast experiment between the Improved STARIMA model and the Dynamic STARIMA model, the result proves that the Improved STARIMA model, which considers the multi-order correlation between the upstream and downstream sections, matches the distribution rules of traffic flow in road network better. Therefore, the forecast results are more accurate. In conclusion, the method of this article is a new method of traffic flow forecasting in the background of big data, and it can realize accurate prediction.
来源 地理科学 ,2017,37(2):209-216 【核心库】
DOI 10.13249/j.cnki.sgs.2017.02.006
关键词 交通流 ; 大数据 ; 分布式增量 ; 路网相关性 ; STARIMA
地址

河南财经政法大学,河南财经政法大学资源与环境学院, 中原经济区“三化”协调发展河南省协同创新中心, 河南, 郑州, 450046

语种 中文
文献类型 研究性论文
ISSN 1000-0690
学科 自然地理学
基金 国家自然科学基金项目 ;  河南财经政法大学博士科研启动基金项目
文献收藏号 CSCD:5939557

参考文献 共 29 共2页

1.  李德仁. 论时空大数据及其应用. 卫星应用,2015(9):7-11 被引 24    
2.  Bose J H. Beyond online aggregation: Parallel and incremental data mining with online Map-Reduce. Proc of Workshop on Massive Data Analytics on the Cloud,2010 被引 2    
3.  Aghabozorgi S. Incremental clustering of time-series by fuzzy clustering. Journal of Information Science and Engineering,2012,28(4):671-688 被引 3    
4.  Laptev N. Very fast estimation for result and accuracy of big data analysis:The EARL system. Proc of ICDE,2013:1296-1299 被引 2    
5.  Zhang S B. Accelerating MapReduce with Distributed Memory Cache. Proc of ICPADS,2009:472-478 被引 2    
6.  Stephanedes Y J. Improved estimation of traffic flow for real-time control. Transportation Research Record 795,1981:28-39 被引 6    
7.  Okutani I. Dynamic prediction of traffic volume through Kalman filtering theory. Transportation Research Part B:Methodological,1984,18(1):1-11 被引 63    
8.  Ahmaed M S. Analysis of freeway traffic time-series data by using Box-Jenkins technique. Transportation Research Record 722,1979:1-9 被引 4    
9.  Doughetry M S. Short-term inter-urban traffic forecasts using neural networks. International Journal of Forecasting,1997,13(1):21-31 被引 14    
10.  Ledoux C. An urban traffic flow model integrating neural networks. Transportation Research Part C: Emerging Technologies,1997,5(5):287-300 被引 15    
11.  Yue Yang. Spatial-temporal dependency of traffic flow and its implications for short-term traffic forecasting,2006 被引 3    
12.  Kamarianakis Y. Space-time modeling of traffic flow. Computers & Geosciences,2005,31:119-133 被引 26    
13.  Martin R L. The identification of regional forecasting models using space-time correlation functions. Trans Inst Brit Geogr,1975,66:95-118 被引 17    
14.  余碧莹. 基于时空模型的道路网交通状态预测. 第四届中国智能交通年会论文集,2008:546-551 被引 5    
15.  Lin Shulan. The application of space-time ARIMA model On traffic flow forecasting. Proceedings of the 8th International Conference on Machine Learning and Cybernetics,2009:3408-3412 被引 5    
16.  Min Xinyu. Short-term traffic flow forecasting of urban network based on dynamic STARIMA model. Proceedings of the 12th International IEEE Conference on Intelligent Transportation Systems,2009:461-466 被引 5    
17.  瞿莉. 基于动态交通流分配参数的网络交通状态建模与分析,2010 被引 5    
18.  张和生. 区域交通状态分析的时空分层模型. 清华大学学报:自然科学版,2007,47(1):157-160 被引 18    
19.  王晓原. 交通流信息挖掘的非参数概率变点模型研究. 武汉理工大学学报:交通科学与工程版,2010,34(4):801-805 被引 3    
20.  郭志懋. 数据质量和数据清洗研究综述. 软件学报,2002,13(11):2076-2082 被引 71    
引证文献 9

1 潘文雯 基于休假排队模型的小区开放效果仿真 系统仿真学报,2018,30(7):2533-2539
被引 0 次

2 李欣 Spark框架下交通流数据高效处理方法及其应用 北京大学学报. 自然科学版,2018,54(6):1227-1234
被引 2

显示所有9篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号